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Abstract: 
 

    
In this thesis, I explored the idea of using data augmentation for text datasets 
through developing a python application. Chapter one explains the problem 
statement and what I planned to achieve. Chapter two provides background 
information on definitions and tools used during the study. Chapter three focuses 
on the structure and contents of the python program as well as the features it 
provides. Chapter four is about the result of using the application on three datasets. 
Chapter five presents the summary and conclusion to the thesis, as well as some 
suggestions and improvements for future.  
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Licenses for Software and Content 

Software Copyright License 

Copyright (c) 2018, Anooshik Vartanian 

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and 
associated documentation files (the "Software"), to deal in the Software without restriction, 
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, 
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do 
so, subject to the following conditions: 

The above copyright notice and this permission notice shall be included in all copies or substantial 
portions of the Software. 

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 
SOFTWARE. 

(This license is known as “The MIT License” and can be found at http://opensource.org/licenses/
mit-license.php) 

Content Copyright License 

LICENSE  

Terms and Conditions for Copying, Distributing, and Modifying  

Items other than copying, distributing, and modifying the Content with which this license was 
distributed (such as using, etc.) are outside the scope of this license.  

1. You may copy and distribute exact replicas of the OpenContent (OC) as you receive it, in any 
medium, provided that you conspicuously and appropriately publish on each copy an appropriate 
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and 
to the absence of any warranty; and give any other recipients of the OC a copy of this License along 
with the OC. You may at your option charge a fee for the media and/or handling involved in 
creating a unique copy of the OC for use offline, you may at your option offer instructional support 
for the OC in exchange for a fee, or you may at your option offer warranty in exchange for a fee. 
You may not charge a fee for the OC itself. You may not charge a fee for the sole service of 
providing access to and/or use of the OC via a network (e.g. the Internet), whether it be via the 
world wide web, FTP, or any other method.  
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2. You may modify your copy or copies of the OpenContent or any portion of it, thus forming works 
based on the Content, and distribute such modifications or work under the terms of Section 1 above, 
provided that you also meet all of these conditions:  

a) You must cause the modified content to carry prominent notices stating that you changed it, the 
exact nature and content of the changes, and the date of any change.  

b) You must cause any work that you distribute or publish, that in whole or in part contains or is 
derived from the OC or any part thereof, to be licensed as a whole at no charge to all third parties 
under the terms of this License, unless otherwise permitted under applicable Fair Use law.  

These requirements apply to the modified work as a whole. If identifiable sections of that work are 
not derived from the OC, and can be reasonably considered independent and separate works in 
themselves, then this License, and its terms, do not apply to those sections when you distribute them 
as separate works. But when you distribute the same sections as part of a whole which is a work 
based on the OC, the distribution of the whole must be on the terms of this License, whose 
permissions for other licensees extend to the entire whole, and thus to each and every part 
regardless of who wrote it. Exceptions are made to this requirement to release modified works free 
of charge under this license only in compliance with Fair Use law where applicable.  

3. You are not required to accept this License, since you have not signed it. However, nothing else 
grants you permission to copy, distribute or modify the OC. These actions are prohibited by law if 
you do not accept this License. Therefore, by distributing or translating the OC, or by deriving 
works herefrom, you indicate your acceptance of this License to do so, and all its terms and 
conditions for copying, distributing or translating the OC.  

NO WARRANTY  

4. BECAUSE THE OPENCONTENT (OC) IS LICENSED FREE OF CHARGE, THERE IS NO 
WARRANTY FOR THE OC, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT 
WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER 
PARTIES PROVIDE THE OC "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER 
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. 
THE ENTIRE RISK OF USE OF THE OC IS WITH YOU. SHOULD THE OC PROVE FAULTY, 
INACCURATE, OR OTHERWISE UNACCEPTABLE YOU ASSUME THE COST OF ALL 
NECESSARY REPAIR OR CORRECTION.  

5. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN 
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MIRROR 
AND/OR REDISTRIBUTE THE OC AS PERMITTED ABOVE, BE LIABLE TO YOU FOR 
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL 
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE OC, EVEN IF SUCH 
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH 
DAMAGES.   

(This license is known as “OpenContent License (OPL)” and can be found at http://
opencontent.org/opl.shtml)
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Chapter One: Thesis Overview  
 

Introduction 
 
This chapter explores the general overview of the project, both the importance and 
necessity of implementing the project, the steps involved in choosing a project to 
implement and producing quality software. At first, by stating the problem, I will 
describe the question this thesis has attempted to solve, and then explain the 
objectives of the implementation and the assumptions contained in the outline of 
the plan. 
 
 

Problem Statement 
 
One of the problems data scientists face in text datasets is getting clean data to 
analyze and extract meaningful materials from it. The main issue here is that many 
categories in Natural Language Processing (NLP) come from texts that are 
gathered from social media sites or other sources that are not necessarily in the 
conventional language format. If the data has some errors, for instance, it is 
misspelled, then that row may become useless and lead to wrong results. The data, 
subsequently, must either be removed from the dataset or the data scientist can 
attempt to correct and clean that information. The data has to be removed before 
the training phase but not on live queries, whereas the data can be fixed both 
during the test phase and on live queries. 
Both methods, eliminating the row or attempting to detect or fix the error have 
their challenges. Removing the row might not be the best solution when the dataset 
is small and would ignore data that could be useful. Attempts to fix and clean the 
data also bring out a new set of problems. The error should be detected using 
algorithms and then the data should either be fixed manually or using algorithms. 
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When dealing with data in multiple languages, as is often the case in building a 
global model, cleaning the data will take valuable resources.  
Both options mentioned above are valid and are used in many projects that work 
with text data. This study attempts to use another approach, in which case the data, 
though messy, is kept and used to improve the overall accuracy of the final model. 
The approach uses data augmentation, which is a known technique. It uses machine 
learning to learn robustness to specific types of noise and prevent overfitting, i.e., 
improve out-of-domain results. 
Augmentation approach is also used in case of relatively small datasets, where 
overfitting can often occur. By generating new data based on existing dataset, the 
model would become larger and solve the general overfitting problem. A simple 
example of what the data augmentation wishes to achieve is shown in the sequence 
of sentences below. 
 

Autumn has started, but the leaves in NYC haven’t changed color yet. ​(Original) 
Autumn’s ​ started but the leaves in ​N.Y.C​ haven’t changed color yet. ​(Substitute 

punctuation) 
The leaves in NYC haven’t changed color yet, ​but Autumn has started​. 

(Reordering sentence) 
Autumn has started but the ​leafs ​ in NYC have not changed color yet.  

Fall​ has started, but the leaves in NYC haven’t changed ​colour ​ yet. (Substitute 
Words from American to British) 

 
This class of techniques stands in contrast to lossy pre-processing that normalizes 
or filters data, i.e., reduces noise or data, and which must be applied to real data at 
runtime exactly as it is applied to the training data.  
 

Goals and Objectives 

 
The primary goal of this study is to develop an open-source production-ready 
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Python library that will augment a set of sentences to include many types of 
reasonably realistic mutations. The library will generate a new augmented dataset 
that can be used to train more accurate models. By evaluating the new dataset on 
benchmarks for various natural language tasks, the study can understand the 
effectiveness of different mutations and find out under which parameters it 
performs better on in-domain and out-of-domain data. 
The objectives of this study are: 
● Determining the parameters for mutations that would generate better results 

for most problems. 
● Showing that using text data augmentation can yield significant increases in 

accuracy of the model for common tasks. 
● Providing an easy-to-use library for machine learning projects. 
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Chapter Two: Theoretical Background 

Machine Learning 

 

Machine Learning systems learn how to combine input from model to form an 
algorithm that could, in the long run, produce useful predictions on data that it had 
never encountered before. [1] 
The algorithms devised for Machine Learning are typically categorized into the 
following categories: 

● Supervised learning 
● Unsupervised learning 
● Semi-Supervised learning  
● Reinforcement learning 

This study focuses on supervised learning. In supervised learning, a dataset called 
training dataset acts as a teacher. By studying the training data, it will lead to 
learning a general rule that maps data to labels. A label or a class is what the goal 
of prediction is. The label could be the stock price of Google next month, the kind 
of animal shown in a picture, the language of a sentence, the meaning of an audio 
clip. 
Supervised learning further splits into two broad categories: Regression and 
Classification.  
Classification assigns a label to the model from a finite set of classes to an 
observation. That is, responses are categorical variables and the machine must 
provide a model for distinguishing between two or more discrete labels. For 
example, a natural language processing classification model could determine 
whether an input sentence was in Armenian, English, or Persian.  
After training the model on the training dataset, the model is checked on the 
validation or testing datasets. 
Accuracy - is the measure of the effectiveness of the machine learning model. 
Accuracy is calculated by dividing the number of labels guessed correctly to all the 
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rows in the dataset. 
Accuracy = Number of correct predictions / Total number of predictions 

  
However, it does not mean that the model with the highest accuracy has the best 
performance.  
True Positives (TP) - This refers to the correctly predicted positive values i.e. the 
value of both the actual class and predicted class is yes. 
True Negatives (TN) - These are the correctly predicted negative values i.e. the 
value of both actual class and predicted class is no.  
False Positives (FP) - It indicates values where the actual class is no but the 
predicted class is yes. 
False Negatives (FN) - It indicates values where the actual class is yes but 
predicted class in no. 
 

 
Actual Class 

 
 

Predicted Class 

 
Positive Negative 

Yes True Positive (TP) False Positive (FP) 

No False Negative (FN) True Negative (TN) 
 
 
Based on these values there are two more measures to calculate the performance: 
precision and recall. 
Precision is the ratio of correctly predicted positive values to the total predicted 
positive values. This metric highlights the correct positive predictions out of all the 
positive predictions. High precision indicates low false positive rate. 
Precision attempts to answer the following question: 
What proportion of positive identifications was correctly calculated? 
The formula for precision is: 

Precision = TP  / (TP + FP) 
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Recall is the number of correct positive results divided by the number of all 
relevant samples. Recall attempts to answer the following question: 
What proportion of actual positives was identified correctly? 
The formula for recall is:  

Recall = TP / (TP + FN) 
 
The F1 score or F-score is the harmonic average of the precision and recall, where 
an F1 score reaches its best value at 1(perfect precision and recall) and worst at 0. 

F-Score = 2 ​✕​ (Precision ​✕​ Recall) / (Precision + Recall) 

Data Augmentation 
 
Data augmentation is a class of techniques in machine learning to 1) learn 
robustness to specific types of noise 2) prevent overfitting i.e. improve 
out-of-domain results. 
This class of techniques stands in contrast to lossy pre-processing that normalizes 
or filters data i.e. ​reduces ​ noise or data, and which must be applied to real data at 
runtime exactly as it was applied to the training data. 
A typical approach for supervised tasks is to preserve the annotation while 
mutating the data in some way.  This is standard practice and is effective for tasks 
that use image data [2] and has been tried for audio data as well [3], but little is 
known about how it can be used for text data. 
For example, for an image labelled ​cat​, the dataset can be augmented with images 
generated with combinations of exposure, saturation removal, over-saturation, 
flipping, rotation, cropping, stretching and so on and so forth. 
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Natural language text data is more challenging to mutate realistically because it is 
not in a continuous space - even small mutations can generate invalid data that 
would never occur in real datasets.  
 

fastText 

 

fastText is an open-source library designed to help build scalable solutions for text 
representations and will allow users to learn word representations and text 
classifications. [4] Text classification includes tagging each document in the text 
with a particular class. Sentiment analysis and email classification are classic 
examples of text classification. 
fastText has implemented the following options to train and then test the model. 
The following commands are all that needed to be familiar with for this study. [5] 
supervised- train a supervised classifier 
test- evaluate a supervised classifier 
lr- learning rate, default value is 0.05. Learning rate determines how fast weights 
given to algorithm of determining labels change. 
epoch- number of epochs, default value is 5. The number of epochs is the number 
of times each example is seen. 
dim- size of word vectors, default value is 100. The dim value greatly affects the 
size of the model and consequently affects the performance. 
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Chapter Three: Methods 

Introduction 

This chapter provides the technical development and structure of the program by 
explaining project files and their content. Then the functions provided by the 
program and the variables used to customize them are explained, providing the 
examples.  

 

Structure 

The program developed for this thesis is written in Python language and aims to 
provide a tool for developers and data scientists to apply data augmentation to their 
datasets.  

First version of the program contained a simple input and output flow. The input 
was the path to the text file, the program would read the file line by line. Each line 
would then be divided as a list of words. For each word, there would be a random 
function determining what perturbation to use. For example, if the random was 
from range [0, 0.2) it would add a random letter from alphabet to that word. The 
output would be the collection of all the perturbations in the form of another text 
file. The project was developed in a single .py file. 
As the program evolved, the flow changed and the classes expanded. The current 
structure of the project is visualized in the picture below: 
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The program consists of one main package, noisemix. The contents of the package 
are explained below: 
__init__.py ​contains the main function and is called with various variables, most 
importantly the location of the input file and the number of versions it should 
produce for each row. It then divides the sentences to words and calls word 
perturbation function from noise.py file. Then, it joins the words and calls the 
sentence perturbation function. The result is then written to a file in the same 
directory as input file. The program also has the ability to print the result in the 
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command line for easy viewing. 
config.json ​includes the list of constants that can be set and changed by the user of 
application. The file is read and the values applied when initializing noise.py file. 
Further explanation of this file is provided in Variables section. 
data.py ​includes a list of word, character and keyboard transformations. Now the 
only supported language is English. 
word_trasnformations contains a list of commonly mistaken, or otherwise 
interchangeable words in English. For example it includes [“there”, “their”, 
“they’re”] as well as changes in dialect [“grey”, “gray”] or other interchangeable 
words such as [“2”, “two”]. 
char_transformations provides a similar functionality for punctuations, which 
visually look the same, but has different encoding. The table below shows different 
unicodes for the dot character. [6] 
  
Character Unicode  Character Name Character 

U+00B7 MIDDLE DOT · 

U+002E FULL STOP . 

U+2024 ONE DOT LEADER ․ 

 
 
keyboard_transformations takes the layout for keyboard and is used for 
typo_qwerty perturbation, which simulates how a misspelling can be produced if 
the user types the neighbor key on the keyboard. Now, the supported keyboard 
layout is QWERTY layout, since it is commonly used on standard keyboard 
layouts on English-language computers and mobile devices.  
It is expected, that this collection would be expanded as support for other 
languages is added. 
formats.py ​There are some words or expressions in each rows that should not be 
augmented. For example, when using fastText data, each row has a prefix marked 
__label__ that determines the classification label. In this python file, it is assured 
that the label remains unchanged. __init__.py calls the function for this file before 
adding the row to dataset. Now the only supported format is fastText.  
noise.py ​contains two main functions randnoise and sentence_noise. Upon first 
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load it initializes different perturbations. Both functions essentially perform the 
same action for word and sentence inputs, respectively. They take a random 
collection of available perturbations and randomly choose whether the perturbation 
can be applied to string or sentence. 
perturbations.py​ For each member of the class contained the function name and 
redirected to the respective function. It includes a member which indicated 
probability of getting chosen, called frequency, and the number of times the 
perturbation could get repeated in a sentence, repeated_num.  
The image below shows the structure of the class, along with the ability to set 
different values for perturbation frequency and number of times they could be 
changed runtime. 

 
 

Functions 
A list of the perturbation with description of each of their functionalities is 
explained below.  
 
add_letter 

Adds a random letter from the alphabet to a random position of the word. 
Example: track -> traock (addition of o to fourth position) 
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repeat_letter 

Chooses a random letter from the word and duplicates it. 
Example: best -> beest (adding e in second position) 
 
Remove_letter 

Chooses a random letter from the word and removes it. 
Example: soundtrack -> sountrack (removing n in fifth position) 
 

lowercase 

Changes the word to lowercase.  
Example: Mind -> mind  
 

remove_punct 

Removes any punctuation characters from the word. 
Example: beautiful! -> beautiful 
 

word_swap 

The entire word is replaced by a similar word in the following cases: the words are 
common mistakes (they’re-> their); there are differences in dialects (color -> 
colour); they can be used interchangeably (and->&).   

Example: percent? -> %? 
 

char_swap 

Replaces the character with similar looking character but with different encoding.  
Example: game. -> game​·​ (The dot in fifth position (unicode U+00B7) is replaced 
with similar looking dot (unicode U+002E) 
 
flip_letters 

Chooses two random letters of the word and switches their places. 
Example: would -> wolud (switching l and u in second and fourth position) 
 

typo_qwerty 

Let’s start by examining a common qwerty layout keyboard. 

Page 18 
 



 

 
If we imagine them as two dimensional array for uppercase and lowercase letters, 
they would look like the image below: 

 
We can calculate the distance between two keys by a simple distance formula. In 
which x1,y1 is the position of first key in the two dimensional array and x2,y2 is 
the second key. 

dist = sqrt((x2-x1)^2 + (y2-y1)^2). 
When the program first starts, we collect a list of all key distances from each other 
in key-pair values. For example, the list for ‘f’ would be [('r', 1), ('d', 1), ('g', 1), ('v', 
1), ('4', 2), ('e', 2), ('t', 2), ('s', 2), ('h', 2), ('c', 2), ('b', 2), ('2', 3), ('3', 3), ('5', 3), ('6', 
3), ('w', 3), ('y', 3), ('a', 3), ('j', 3), ('x', 3), ('n', 3), ('1', 4), ('7', 4), ('q', 4), ('u', 4), ('k', 
4), ('z', 4), ('m', 4), ('`', 5), ('8', 5), ('i', 5), ('l', 5), (',', 5), ('9', 6), ('o', 6), (';', 6), ('.', 6), 
('0', 7), ('p', 7), ("'", 7), ('/', 7), ('-', 8), ('[', 8), ('=', 9), (']', 9), ('', 10)] 
The function typo_qwerty takes the closest neighbors by some margin. The default 
value is set at two. Therefore, neighbors with values 1 and 2 are considered in the 
function to replace the letter. If we consider the example for ‘f’ it would be [('r', 1), 
('d', 1), ('g', 1), ('v', 1), ('4', 2), ('e', 2), ('t', 2), ('s', 2), ('h', 2), ('c', 2), ('b', 2)] 
Example: recommend -> revommend (c in third position is replaced by neighbor v)  
 
remove_space 
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Removes the space between a random word and the next word in the sentence.  
Example: I would recommend this game to everyone. -> I would recommendthis 
game to everyone.  
 

flip_words 

Swaps a random word with the next word in the sentence.  
Example: This soundtrack was beautiful! -> This was soundtrack beautiful! 
 
 

Variables 
One of the ways to make the program versatile and easy to use is to avoid 
hard-coded variables and instead, give the users the ability to modify them. I have 
decided to do that by providing basic and commonly used settings through passing 
variables via command line. The more detailed customization can be done via 
editing the values in a configuration file, ​config.json ​. The advantage of using 
external file is that this way it loads the configuration values defined in external 
file, not the built-in data structures. It is also more general way since it is not 
considered to be part of code, so the users would not need to build or perform any 
other action. Both types of variables and their usages are listed below: 

Command line: 
These variables can be configured when running the main (__init__.py file) 
path ​, the path to input data file​. 
format, ​if the dataset has labels or other variables that need to be excluded from 
perturbation. It currently supports fastText. 
versions ​, how many versions to generate per line, default value is 1. 
print​, allows the user to print the output instead of writing to file, default value is 
0. 

Config.json: 
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The image below displays part of the config.json file, which is read as the program 
runs for the first time. 

 
KEYBOARD_LAYOUT, is used for typo_qwerty function and is a global 
variable. 
LANGUAGE, the default language for dataset. 
SENTENCE_PERTURBATION, consists of members MAX_PERTURBATION 
and MIN_LEN which portrays the maximum number of perturbations to be used 
per line and the number of words the minimum sentence length must include to 
perturbate the sentence.  
Then, each perturbation function is configured with "ENABLED", 
"FREQUENCY" and "REPEAT_NUM" variables.  
The same settings are available for WORD_PERTURBATION and its respective 
functions. The user can change the aggressiveness of noises and decide whether to 
include some augmentations from the following file. 
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Data 
I tested the algorithm on datasets provided by three sources. Both data were 
divided to test and train models.  
The first dataset consists of customer reviews [7] as input text and star ratings as 
output labels for sentiment analysis. The negative and positive reviews are labeled 
as seen by examples below. 

__label__1 The Worst!: A complete waste of time. Typographical errors, poor 
grammar, and a totally pathetic plot add up to absolutely nothing. I'm embarrassed 
for this author and very disappointed I actually paid for this book. 
 
The second dataset contains examples of questions from ​the cooking section of 
Stackexchange​ [8], and their associated tags. The input is stackexchange questions 
about cooking and the output is the possible tags, such as pot, bowl or baking. In 
this dataset, the input can have multiple labels. 
__label__equipment __label__knives What should I look for in a good, 
multi-purpose chef's knife? 
 
The third dataset contains sentences from the Tatoeba website [9], which is a 
collection of sentences and translations. The input are the sentences and output 
labels are indicating the language is the result.  
__label__fra Le champ a désespérément besoin d'eau. 
__label__eng Tom stopped suddenly. 
 
These three datasets’ results are further discussed on Chapter Five. 
 

Performance 
The program will be more useful for other developers, if it runs in a reasonably 
quick time and generates new version of dataset. 
Profiler [10] measures the duration and number of times each function is called. I 
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was able to detect from the image below the functions that took up most of the time 
was the random function. The result is from running the program to produce three 
versions of train set of 10,000 rows of amazon review data sentiment analysis 
code.  
 

 
 
Sample which appears as the front row of the table is part of the random package in 
python. By examining the code, it was obvious that a lot of perturbation functions 
used random.sample() function to get a random position or letter to apply the 
perturbation to. Then, I decided to write a custom random function and find more 
efficient functions to optimize the code. 
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Packaging 
The final step of the development was to package and distribute the Python project 
[11]. The Python Package Index, abbreviated as PyPI is the official third-party 
software repository for Python. Following the instruction, the package is set on the 
following link  and can be installed via pip install noisemix command. 1

 
I have also uploaded the program on github, so that other developers can view and 
contribute to the source code. The link to the github directory is located on 
https://github.com/noisemix/noisemix 

  

1  ​ ​http://pypi.python.org/pypi/noisemix 
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Chapter Four: Results 

Introduction 

Chapter four explores the results from three datasets. The datasets have been 
benchmarked before in regards to their performance. Now I will include how 
augmenting the new dataset will affect the performance. For each dataset, I have 
mentioned how many rows the dataset consisted of, and what the original precision 
was. Then I will try the application with some different values for parameters 
(version, frequency, whether to include the original data in the mix). The results 
are rounded up to four decimal point precision. It is important to note that the 
default value for word and sentence perturbation frequency is two and the default 
number of times each perturbation is repeated per word or sentence (repeat_num) 
is one. 

Amazon Reviews 
 
Overall, the data consisted of 4,00,000 rows[7]. I took ten percent for test dataset 
(400,000) and the rest was used for training data. The python code to run is 
displayed below. 

fasttext supervised -input train.ft.txt -output model_amzn 

The original precision for different row size of training data is show below. 

 
Precision 

10,000 rows 0.8151 

20,000 rows 0.8528 

30,000 rows 0.8641 

40,000 rows 0.8708 

50,000 rows 0.8748 
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60,000 rows 0.8784 

70,000 rows 0.8811 

80,000 rows 0.8834 

 
 
Here is an example of running the augmentation application on a row from this 
dataset.  
Test line: 
__label__2 Amazing!: LJ smith is a fantastic author who inspires others to create 
stories and poetry that shows their true brilliance. Daughters of Darkness has a 
special quality about it which induces feeling of love and adventure all at the same 
time. I would not be surprised if people respond well to this novel! 
 
Augmented Sentences: 
__label__2 Amazing!: LJ smith is a bfantastic author who inspires others to 
crePate stories and potry tHhat shows their true brilliance. DDaughters of 
DarknUess has a speciall quality about itwhcih indduces feeling of lovee andud 
adventure all at the same time. I would not be surprised if people respond welml to 
this novvel! 
__label__2 Ammazing!: LJ smith is a bfantastic author wOho inspires others to 
crePate torries aand potry tHHhat shows their rtue brilliance. DDaughterds of 
darknuess has a speciall uality about itwhhcih indduces feeling of lovee andud 
adventture all at the same time I would noQt be surprised if people respond welml 
to this novvel! 
__label__2 Ammazing!: LJ smith is a bfan6astic author wOhk inspires others to 
crePate torrixes aaand ppotry ttHHhat shows their wtue brilliance. DDaughterds 
respond darknuess has a specall uality aboutt itwhhcih indduces feeling of lovde 
andud adventture all at the same time I would noAQt be surprised if people of 
welml to this novvvel! 
 
 
Result  
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10,000 rows 

version  Precision  

1 0.7846 

2 0.8290 

3 0.8356 

1+original 0.8398 

2+original 0.8426 

3+original 0.8436 

 
20,000 rows 
version  Precision  

1 0.8420 

2 0.8553 

3 0.8585 

1+original 0.8601 

2+original 0.8604 

3+original 0.8614 

 
 
The best precision result was for 20,000 rows + original, version =2. So we take 
that row and test the performance when applying different frequency of 
perturbations for sentence and word parameters.  
 
Word Perturbation 
Frequency 

Sentence Perturbation 
Frequency 

Precision 

0.1 0.1 0.8613 

0.1 0.2 0.8612 

0.2 0.1 0.8625 

0.2 0.2 0.8604 
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0.3 0.3  0.8616 

 
 
The best precision is taken (20,000 rows + original, version =2, Word Perturbation 
Frequency=0.2, Sentence Perturbation Frequency=0.1) and this time different 
values of repeat_num is tested for word and sentence perturbation. 
 
Word Perturbation Repeat Sentence Perturbation 

Repeat Precision 

1 1 0.8625 

1 2 0.8605 

2 1 0.8612 

2 2 0.8620 
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Language Detection 
 
Overall, the data consisted of 6,00,000 rows [12]. I took ten percent for test dataset 
(600,000) and the rest was used for training data. It is important to note that for this 
dataset the typo_qwerty as well as add_letter functions were disabled, since they 
were depending on the language of the dataset to remain the same. 
  
The python code to run is displayed below. 
 

fasttext supervised -input train.txt -output langdetect -dim 16 

 

The original precision for different row size of training data is show below. 
 

 
Precision 

10,000 rows 0.7081 

20,000 rows 0.7691 

30,000 rows 0.8076 

40,000 rows 0.8285 

50,000 rows 0.8437 

60,000 rows 0.8518 

70,000 rows 0.8590 

80,000 rows 0.8630 
 
 

Here is an example of running the augmentation application on a row from this 
dataset.  

Test line: 
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__label__eng Tom looked into his knapsack and realized that his computer had 
been stolen. 
 
Augmented Sentences: 
__label__eng Tom looked into his knapsack and realizeed that his compputer had 
been stolen. 
 
__label__eng Tom looked into hSis knnavpsack and reelizead that h8s compputer 
had been stolen. 
 
__label__eng om looked into hSis knnavpsack and reelizead that h8s compputer 
had beeen stlen. 
Result  
10,000 rows 

version  Precision  

1 0.6532 

2 0.7401 

3 0.7656 

1+original 0.7535 

2+original 0.7867 

3+original 0.7997 

 
20,000 rows 
version  Precision  

1 0.7481 

2 0.8031 

3 0.8174 

1+original 0.8158 

2+original 0.8338 

3+original 0.8426 
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20,000 rows + original, version=3 
Word Perturbation 
Frequency 

Sentence Perturbation 
Frequency Precision 

0.1 0.1 0.8487 

0.1 0.2 0.8491 

0.2 0.1 0.8462 

0.2 0.2 0.8426 

0.3 0.3 0.8366 

 
 
20,000 rows + original, version =3, Word Perturbation Frequency=0.1, Sentence 
Perturbation Frequency=0.2 

 
Word Perturbation Repeat Sentence Perturbation 

Repeat 
Precision 

1 1 0.8491 

1 2 0.8477 

2 1 0.8444 

2 2  0.8425 
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StackExchange Cooking Question 

Overall, the data consisted of 15,404 rows [13], which was a relatively small 
dataset. I took approximately ten percent for test dataset (1,500) and the rest was 
used for training data. It is important to note that for this dataset the precision and 
recall value are different and therefore the measure for performance is F-Score.  

  

The python code to run is displayed below. 

 

fasttext supervised -input cooking.train -output model_cooking -lr 
1.0 -epoch 25 

 

The original result for different row size of training data is show below. 
 

 

 
Precision Recall F-Score 

5,000 rows 0.4623 0.2 0.2792 

10,000 rows 0.5293 0.2284 
0.3191 

All (13,904 rows) 0.5660 0.2439 
0.3409 
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Here is an example of running the augmentation application on a row from this 
dataset.  

Test line: 
__label__sauce __label__cheese How much does potato starch affect a cheese 
sauce recipe? 
 
Augmented Sentences: 
__label__sauce __label__cheese How much does po4aot starch affect a ceese 
sauce recipe? 
 
__label__sauce __label__cheese Ho much dooes po4aot starch affecta ceesie 
zaucDe recipe 
 
__label__sauce __label__cheese Ho much dooes po4aot starch affecta 
TceesiezaucDe recipe 
 
 
Result  
5,000 rows  

version  precision recall F-score 

1 0.4310 0.1864 0.2603 

2 0.4363 0.1887 0.2635 

3 0.4230 0.1830 0.2554 

1+original 0.4590 0.1986 0.2772 

2+original 0.4530 0.1960 0.2736 

3+original 0.4523 0.1957 0.2732 

 
 
10,000 rows 
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version  precision recall F-score 

1 0.492 0.2123 0.2966 

2 0.5047 0.2177 0.3042 

3 0.4853 0.2094 0.2925 

1+original 0.5107 0.2203 0.3078 

2+original 0.516 0.2226 0.3110 

3+original 0.506 0.2183 0.3050 

 
 
10,000 rows + original, version =2  
Word 
Perturbation 
Frequency 

Sentence 
Perturbation 
Frequency 

precision 
recall F-score 

0.1 0.1 0.5193 0.2240 0.3130 

0.1 0.2 0.5107 0.2203 0.3078 

0.2 0.1 0.5133 0.2215 0.3094 

0.2 0.2 0.516 0.2226 0.3110 

0.3 0.3 0.5133 0.2215 0.3094 

 
 
10,000 rows + original, version =2, Word Perturbation Frequency=0.1, Sentence 
Perturbation Frequency=0.1 
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Word 
Perturbation 
Repeat 

Sentence 
Perturbation 
Repeat 

precision recall F-Score 

1 1 
0.5193 0.2240 0.3130 

1 2 0.504 0.2174 0.3038 

2 1 0.516 0.2226 0.3110 

2 2 0.5087 0.2194 0.3066 
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Chapter Five: Conclusion 

Summary 
This study provides a new tool for data scientists to modify their datasets by 
applying realistic augmentations and improve the performance of their models. The 
program includes several functions, mimicking the errors and noise, which can be 
in text, and includes variables that can be set up to control the aggressiveness of 
those functions. Comparison with existing models on text classification datasets 
showed that by providing different version of same rows, the precision would 
improve. 

Future Work 
For future work, I would suggest the following improvements of the thesis and 
project: 
 

● Implement grid search to figure out the effect each perturbation has on the 
overall performance of the application  

● Support more dataset file types 
● Support more languages/ keyboard layouts 
● Improve speed for application 
● Test application with more datasets, e.g. unsupervised learning  
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