

Data Augmentation for Natural Language Text Datasets

by

Anooshik Vartanian

Bachelor of Software Engineering, Shahid Beheshti University, 201 ​6

A thesis submitted in partial satisfaction of

the requirements for the degree of

Master of Science

in

Computer & Information Science

in the

COLLEGE OF SCIENCE AND ENGINEERING

of the

AMERICAN UNIVERSITY OF ARMENIA

Supervisor: Adam Mathias Bittlingmayer

Signature: __________________ Date:_____________

Committee Member: ____________________
Signature: __________________ Date:_____________

Committee Member: ____________________

Signature: __________________ Date:_____________

Committee Member: ____________________
Signature: __________________ Date:_____________

This study is dedicated to my parents; my mother, Shakeh and my father, Vahik.

I appreciate all the sacrifices you made for me to get to this point in my life.

This paper would not have been possible without your encouragement, support and

endless love.

Page 3

Acknowledgement:

I would like to thank, first and foremost, my supervisor, ​Adam Mathias

Bittlingmayer​, for his trust and motivation throughout developing and writing the

paper. I appreciate all the times he has provided professional guidance during this

study.

My gratitude extends to my wonderful mentors, colleagues and friends in

Informatics Solution ​ for providing me with supporting working environment and
having shown deep understanding in the chaotic life of a Master’s degree student!

Page 4

Abstract:

In this thesis, I explored the idea of using data augmentation for text datasets
through developing a python application. Chapter one explains the problem
statement and what I planned to achieve. Chapter two provides background
information on definitions and tools used during the study. Chapter three focuses
on the structure and contents of the python program as well as the features it
provides. Chapter four is about the result of using the application on three datasets.
Chapter five presents the summary and conclusion to the thesis, as well as some
suggestions and improvements for future.

Keywords: Perturbation, Python, Natural Language Processing

Page 5

Licenses for Software and Content

Software Copyright License

Copyright (c) 2018, Anooshik Vartanian

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

(This license is known as “The MIT License” and can be found at http://opensource.org/licenses/
mit-license.php)

Content Copyright License

LICENSE

Terms and Conditions for Copying, Distributing, and Modifying

Items other than copying, distributing, and modifying the Content with which this license was
distributed (such as using, etc.) are outside the scope of this license.

1. You may copy and distribute exact replicas of the OpenContent (OC) as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and
to the absence of any warranty; and give any other recipients of the OC a copy of this License along
with the OC. You may at your option charge a fee for the media and/or handling involved in
creating a unique copy of the OC for use offline, you may at your option offer instructional support
for the OC in exchange for a fee, or you may at your option offer warranty in exchange for a fee.
You may not charge a fee for the OC itself. You may not charge a fee for the sole service of
providing access to and/or use of the OC via a network (e.g. the Internet), whether it be via the
world wide web, FTP, or any other method.

Anooshik

2. You may modify your copy or copies of the OpenContent or any portion of it, thus forming works
based on the Content, and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

a) You must cause the modified content to carry prominent notices stating that you changed it, the
exact nature and content of the changes, and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the OC or any part thereof, to be licensed as a whole at no charge to all third parties
under the terms of this License, unless otherwise permitted under applicable Fair Use law.

These requirements apply to the modified work as a whole. If identifiable sections of that work are
not derived from the OC, and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those sections when you distribute them
as separate works. But when you distribute the same sections as part of a whole which is a work
based on the OC, the distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to each and every part
regardless of who wrote it. Exceptions are made to this requirement to release modified works free
of charge under this license only in compliance with Fair Use law where applicable.

3. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to copy, distribute or modify the OC. These actions are prohibited by law if
you do not accept this License. Therefore, by distributing or translating the OC, or by deriving
works herefrom, you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or translating the OC.

NO WARRANTY

4. BECAUSE THE OPENCONTENT (OC) IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE OC, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT
WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER
PARTIES PROVIDE THE OC "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK OF USE OF THE OC IS WITH YOU. SHOULD THE OC PROVE FAULTY,
INACCURATE, OR OTHERWISE UNACCEPTABLE YOU ASSUME THE COST OF ALL
NECESSARY REPAIR OR CORRECTION.

5. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MIRROR
AND/OR REDISTRIBUTE THE OC AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE OC, EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

(This license is known as “OpenContent License (OPL)” and can be found at http://
opencontent.org/opl.shtml)

Anooshik

Table of Contents:

Chapter One: Thesis Overview 7

Introduction 7

Problem Statement 7

Goals and Objectives 8

Chapter Two: Theoretical Background 10

Machine Learning 10

Data Augmentation 12

fastText 13

Chapter Three: Methods 14

Introduction 14

Structure 14

Functions 17

Variables 20

Data 22

Performance 22

Packaging 24

Chapter Four: Results 25

Introduction 25

Amazon Reviews 25

Language Detection 29

StackExchange Cooking Question 32

Chapter Five: Conclusion 36

Summary 36

Future Work 36

Page 6

Chapter One: Thesis Overview

Introduction

This chapter explores the general overview of the project, both the importance and
necessity of implementing the project, the steps involved in choosing a project to
implement and producing quality software. At first, by stating the problem, I will
describe the question this thesis has attempted to solve, and then explain the
objectives of the implementation and the assumptions contained in the outline of
the plan.

Problem Statement

One of the problems data scientists face in text datasets is getting clean data to
analyze and extract meaningful materials from it. The main issue here is that many
categories in Natural Language Processing (NLP) come from texts that are
gathered from social media sites or other sources that are not necessarily in the
conventional language format. If the data has some errors, for instance, it is
misspelled, then that row may become useless and lead to wrong results. The data,
subsequently, must either be removed from the dataset or the data scientist can
attempt to correct and clean that information. The data has to be removed before
the training phase but not on live queries, whereas the data can be fixed both
during the test phase and on live queries.
Both methods, eliminating the row or attempting to detect or fix the error have
their challenges. Removing the row might not be the best solution when the dataset
is small and would ignore data that could be useful. Attempts to fix and clean the
data also bring out a new set of problems. The error should be detected using
algorithms and then the data should either be fixed manually or using algorithms.

Page 7

When dealing with data in multiple languages, as is often the case in building a
global model, cleaning the data will take valuable resources.
Both options mentioned above are valid and are used in many projects that work
with text data. This study attempts to use another approach, in which case the data,
though messy, is kept and used to improve the overall accuracy of the final model.
The approach uses data augmentation, which is a known technique. It uses machine
learning to learn robustness to specific types of noise and prevent overfitting, i.e.,
improve out-of-domain results.
Augmentation approach is also used in case of relatively small datasets, where
overfitting can often occur. By generating new data based on existing dataset, the
model would become larger and solve the general overfitting problem. A simple
example of what the data augmentation wishes to achieve is shown in the sequence
of sentences below.

Autumn has started, but the leaves in NYC haven’t changed color yet. ​(Original)
Autumn’s ​ started but the leaves in ​N.Y.C​ haven’t changed color yet. ​(Substitute

punctuation)
The leaves in NYC haven’t changed color yet, ​but Autumn has started​.

(Reordering sentence)
Autumn has started but the ​leafs ​ in NYC have not changed color yet.

Fall​ has started, but the leaves in NYC haven’t changed ​colour ​ yet. (Substitute
Words from American to British)

This class of techniques stands in contrast to lossy pre-processing that normalizes
or filters data, i.e., reduces noise or data, and which must be applied to real data at
runtime exactly as it is applied to the training data.

Goals and Objectives

The primary goal of this study is to develop an open-source production-ready

Page 8

Python library that will augment a set of sentences to include many types of
reasonably realistic mutations. The library will generate a new augmented dataset
that can be used to train more accurate models. By evaluating the new dataset on
benchmarks for various natural language tasks, the study can understand the
effectiveness of different mutations and find out under which parameters it
performs better on in-domain and out-of-domain data.
The objectives of this study are:
● Determining the parameters for mutations that would generate better results

for most problems.
● Showing that using text data augmentation can yield significant increases in

accuracy of the model for common tasks.
● Providing an easy-to-use library for machine learning projects.

Page 9

Chapter Two: Theoretical Background

Machine Learning

Machine Learning systems learn how to combine input from model to form an
algorithm that could, in the long run, produce useful predictions on data that it had
never encountered before. [1]
The algorithms devised for Machine Learning are typically categorized into the
following categories:

● Supervised learning
● Unsupervised learning
● Semi-Supervised learning
● Reinforcement learning

This study focuses on supervised learning. In supervised learning, a dataset called
training dataset acts as a teacher. By studying the training data, it will lead to
learning a general rule that maps data to labels. A label or a class is what the goal
of prediction is. The label could be the stock price of Google next month, the kind
of animal shown in a picture, the language of a sentence, the meaning of an audio
clip.
Supervised learning further splits into two broad categories: Regression and
Classification.
Classification assigns a label to the model from a finite set of classes to an
observation. That is, responses are categorical variables and the machine must
provide a model for distinguishing between two or more discrete labels. For
example, a natural language processing classification model could determine
whether an input sentence was in Armenian, English, or Persian.
After training the model on the training dataset, the model is checked on the
validation or testing datasets.
Accuracy - is the measure of the effectiveness of the machine learning model.
Accuracy is calculated by dividing the number of labels guessed correctly to all the

Page 10

rows in the dataset.
Accuracy = Number of correct predictions / Total number of predictions

However, it does not mean that the model with the highest accuracy has the best
performance.
True Positives (TP) - This refers to the correctly predicted positive values i.e. the
value of both the actual class and predicted class is yes.
True Negatives (TN) - These are the correctly predicted negative values i.e. the
value of both actual class and predicted class is no.
False Positives (FP) - It indicates values where the actual class is no but the
predicted class is yes.
False Negatives (FN) - It indicates values where the actual class is yes but
predicted class in no.

Actual Class

Predicted Class

Positive Negative

Yes True Positive (TP) False Positive (FP)

No False Negative (FN) True Negative (TN)

Based on these values there are two more measures to calculate the performance:
precision and recall.
Precision is the ratio of correctly predicted positive values to the total predicted
positive values. This metric highlights the correct positive predictions out of all the
positive predictions. High precision indicates low false positive rate.
Precision attempts to answer the following question:
What proportion of positive identifications was correctly calculated?
The formula for precision is:

Precision = TP / (TP + FP)

Page 11

Recall is the number of correct positive results divided by the number of all
relevant samples. Recall attempts to answer the following question:
What proportion of actual positives was identified correctly?
The formula for recall is:

Recall = TP / (TP + FN)

The F1 score or F-score is the harmonic average of the precision and recall, where
an F1 score reaches its best value at 1(perfect precision and recall) and worst at 0.

F-Score = 2 ​✕​ (Precision ​✕​ Recall) / (Precision + Recall)

Data Augmentation

Data augmentation is a class of techniques in machine learning to 1) learn
robustness to specific types of noise 2) prevent overfitting i.e. improve
out-of-domain results.
This class of techniques stands in contrast to lossy pre-processing that normalizes
or filters data i.e. ​reduces ​ noise or data, and which must be applied to real data at
runtime exactly as it was applied to the training data.
A typical approach for supervised tasks is to preserve the annotation while
mutating the data in some way. This is standard practice and is effective for tasks
that use image data [2] and has been tried for audio data as well [3], but little is
known about how it can be used for text data.
For example, for an image labelled ​cat​, the dataset can be augmented with images
generated with combinations of exposure, saturation removal, over-saturation,
flipping, rotation, cropping, stretching and so on and so forth.

Page 12

Natural language text data is more challenging to mutate realistically because it is
not in a continuous space - even small mutations can generate invalid data that
would never occur in real datasets.

fastText

fastText is an open-source library designed to help build scalable solutions for text
representations and will allow users to learn word representations and text
classifications. [4] Text classification includes tagging each document in the text
with a particular class. Sentiment analysis and email classification are classic
examples of text classification.
fastText has implemented the following options to train and then test the model.
The following commands are all that needed to be familiar with for this study. [5]
supervised- train a supervised classifier
test- evaluate a supervised classifier
lr- learning rate, default value is 0.05. Learning rate determines how fast weights
given to algorithm of determining labels change.
epoch- number of epochs, default value is 5. The number of epochs is the number
of times each example is seen.
dim- size of word vectors, default value is 100. The dim value greatly affects the
size of the model and consequently affects the performance.

Page 13

Chapter Three: Methods

Introduction

This chapter provides the technical development and structure of the program by
explaining project files and their content. Then the functions provided by the
program and the variables used to customize them are explained, providing the
examples.

Structure

The program developed for this thesis is written in Python language and aims to
provide a tool for developers and data scientists to apply data augmentation to their
datasets.

First version of the program contained a simple input and output flow. The input
was the path to the text file, the program would read the file line by line. Each line
would then be divided as a list of words. For each word, there would be a random
function determining what perturbation to use. For example, if the random was
from range [0, 0.2) it would add a random letter from alphabet to that word. The
output would be the collection of all the perturbations in the form of another text
file. The project was developed in a single .py file.
As the program evolved, the flow changed and the classes expanded. The current
structure of the project is visualized in the picture below:

Page 14

The program consists of one main package, noisemix. The contents of the package
are explained below:
__init__.py ​contains the main function and is called with various variables, most
importantly the location of the input file and the number of versions it should
produce for each row. It then divides the sentences to words and calls word
perturbation function from noise.py file. Then, it joins the words and calls the
sentence perturbation function. The result is then written to a file in the same
directory as input file. The program also has the ability to print the result in the

Page 15

command line for easy viewing.
config.json ​includes the list of constants that can be set and changed by the user of
application. The file is read and the values applied when initializing noise.py file.
Further explanation of this file is provided in Variables section.
data.py ​includes a list of word, character and keyboard transformations. Now the
only supported language is English.
word_trasnformations contains a list of commonly mistaken, or otherwise
interchangeable words in English. For example it includes [“there”, “their”,
“they’re”] as well as changes in dialect [“grey”, “gray”] or other interchangeable
words such as [“2”, “two”].
char_transformations provides a similar functionality for punctuations, which
visually look the same, but has different encoding. The table below shows different
unicodes for the dot character. [6]

Character Unicode Character Name Character

U+00B7 MIDDLE DOT ·

U+002E FULL STOP .

U+2024 ONE DOT LEADER ․

keyboard_transformations takes the layout for keyboard and is used for
typo_qwerty perturbation, which simulates how a misspelling can be produced if
the user types the neighbor key on the keyboard. Now, the supported keyboard
layout is QWERTY layout, since it is commonly used on standard keyboard
layouts on English-language computers and mobile devices.
It is expected, that this collection would be expanded as support for other
languages is added.
formats.py ​There are some words or expressions in each rows that should not be
augmented. For example, when using fastText data, each row has a prefix marked
__label__ that determines the classification label. In this python file, it is assured
that the label remains unchanged. __init__.py calls the function for this file before
adding the row to dataset. Now the only supported format is fastText.
noise.py ​contains two main functions randnoise and sentence_noise. Upon first

Page 16

load it initializes different perturbations. Both functions essentially perform the
same action for word and sentence inputs, respectively. They take a random
collection of available perturbations and randomly choose whether the perturbation
can be applied to string or sentence.
perturbations.py​ For each member of the class contained the function name and
redirected to the respective function. It includes a member which indicated
probability of getting chosen, called frequency, and the number of times the
perturbation could get repeated in a sentence, repeated_num.
The image below shows the structure of the class, along with the ability to set
different values for perturbation frequency and number of times they could be
changed runtime.

Functions
A list of the perturbation with description of each of their functionalities is
explained below.

add_letter

Adds a random letter from the alphabet to a random position of the word.
Example: track -> traock (addition of o to fourth position)

Page 17

repeat_letter

Chooses a random letter from the word and duplicates it.
Example: best -> beest (adding e in second position)

Remove_letter

Chooses a random letter from the word and removes it.
Example: soundtrack -> sountrack (removing n in fifth position)

lowercase

Changes the word to lowercase.
Example: Mind -> mind

remove_punct

Removes any punctuation characters from the word.
Example: beautiful! -> beautiful

word_swap

The entire word is replaced by a similar word in the following cases: the words are
common mistakes (they’re-> their); there are differences in dialects (color ->
colour); they can be used interchangeably (and->&).

Example: percent? -> %?

char_swap

Replaces the character with similar looking character but with different encoding.
Example: game. -> game​·​ (The dot in fifth position (unicode U+00B7) is replaced
with similar looking dot (unicode U+002E)

flip_letters

Chooses two random letters of the word and switches their places.
Example: would -> wolud (switching l and u in second and fourth position)

typo_qwerty

Let’s start by examining a common qwerty layout keyboard.

Page 18

If we imagine them as two dimensional array for uppercase and lowercase letters,
they would look like the image below:

We can calculate the distance between two keys by a simple distance formula. In
which x1,y1 is the position of first key in the two dimensional array and x2,y2 is
the second key.

dist = sqrt((x2-x1)^2 + (y2-y1)^2).
When the program first starts, we collect a list of all key distances from each other
in key-pair values. For example, the list for ‘f’ would be [('r', 1), ('d', 1), ('g', 1), ('v',
1), ('4', 2), ('e', 2), ('t', 2), ('s', 2), ('h', 2), ('c', 2), ('b', 2), ('2', 3), ('3', 3), ('5', 3), ('6',
3), ('w', 3), ('y', 3), ('a', 3), ('j', 3), ('x', 3), ('n', 3), ('1', 4), ('7', 4), ('q', 4), ('u', 4), ('k',
4), ('z', 4), ('m', 4), ('`', 5), ('8', 5), ('i', 5), ('l', 5), (',', 5), ('9', 6), ('o', 6), (';', 6), ('.', 6),
('0', 7), ('p', 7), ("'", 7), ('/', 7), ('-', 8), ('[', 8), ('=', 9), (']', 9), ('', 10)]
The function typo_qwerty takes the closest neighbors by some margin. The default
value is set at two. Therefore, neighbors with values 1 and 2 are considered in the
function to replace the letter. If we consider the example for ‘f’ it would be [('r', 1),
('d', 1), ('g', 1), ('v', 1), ('4', 2), ('e', 2), ('t', 2), ('s', 2), ('h', 2), ('c', 2), ('b', 2)]
Example: recommend -> revommend (c in third position is replaced by neighbor v)

remove_space

Page 19

Removes the space between a random word and the next word in the sentence.
Example: I would recommend this game to everyone. -> I would recommendthis
game to everyone.

flip_words

Swaps a random word with the next word in the sentence.
Example: This soundtrack was beautiful! -> This was soundtrack beautiful!

Variables
One of the ways to make the program versatile and easy to use is to avoid
hard-coded variables and instead, give the users the ability to modify them. I have
decided to do that by providing basic and commonly used settings through passing
variables via command line. The more detailed customization can be done via
editing the values in a configuration file, ​config.json ​. The advantage of using
external file is that this way it loads the configuration values defined in external
file, not the built-in data structures. It is also more general way since it is not
considered to be part of code, so the users would not need to build or perform any
other action. Both types of variables and their usages are listed below:

Command line:
These variables can be configured when running the main (__init__.py file)
path ​, the path to input data file​.
format, ​if the dataset has labels or other variables that need to be excluded from
perturbation. It currently supports fastText.
versions ​, how many versions to generate per line, default value is 1.
print​, allows the user to print the output instead of writing to file, default value is
0.

Config.json:

Page 20

The image below displays part of the config.json file, which is read as the program
runs for the first time.

KEYBOARD_LAYOUT, is used for typo_qwerty function and is a global
variable.
LANGUAGE, the default language for dataset.
SENTENCE_PERTURBATION, consists of members MAX_PERTURBATION
and MIN_LEN which portrays the maximum number of perturbations to be used
per line and the number of words the minimum sentence length must include to
perturbate the sentence.
Then, each perturbation function is configured with "ENABLED",
"FREQUENCY" and "REPEAT_NUM" variables.
The same settings are available for WORD_PERTURBATION and its respective
functions. The user can change the aggressiveness of noises and decide whether to
include some augmentations from the following file.

Page 21

Data
I tested the algorithm on datasets provided by three sources. Both data were
divided to test and train models.
The first dataset consists of customer reviews [7] as input text and star ratings as
output labels for sentiment analysis. The negative and positive reviews are labeled
as seen by examples below.

__label__1 The Worst!: A complete waste of time. Typographical errors, poor
grammar, and a totally pathetic plot add up to absolutely nothing. I'm embarrassed
for this author and very disappointed I actually paid for this book.

The second dataset contains examples of questions from ​the cooking section of
Stackexchange​ [8], and their associated tags. The input is stackexchange questions
about cooking and the output is the possible tags, such as pot, bowl or baking. In
this dataset, the input can have multiple labels.
__label__equipment __label__knives What should I look for in a good,
multi-purpose chef's knife?

The third dataset contains sentences from the Tatoeba website [9], which is a
collection of sentences and translations. The input are the sentences and output
labels are indicating the language is the result.
__label__fra Le champ a désespérément besoin d'eau.
__label__eng Tom stopped suddenly.

These three datasets’ results are further discussed on Chapter Five.

Performance
The program will be more useful for other developers, if it runs in a reasonably
quick time and generates new version of dataset.
Profiler [10] measures the duration and number of times each function is called. I

Page 22

http://cooking.stackexchange.com/
http://cooking.stackexchange.com/

was able to detect from the image below the functions that took up most of the time
was the random function. The result is from running the program to produce three
versions of train set of 10,000 rows of amazon review data sentiment analysis
code.

Sample which appears as the front row of the table is part of the random package in
python. By examining the code, it was obvious that a lot of perturbation functions
used random.sample() function to get a random position or letter to apply the
perturbation to. Then, I decided to write a custom random function and find more
efficient functions to optimize the code.

Page 23

Packaging
The final step of the development was to package and distribute the Python project
[11]. The Python Package Index, abbreviated as PyPI is the official third-party
software repository for Python. Following the instruction, the package is set on the
following link and can be installed via pip install noisemix command. 1

I have also uploaded the program on github, so that other developers can view and
contribute to the source code. The link to the github directory is located on
https://github.com/noisemix/noisemix

1 ​ ​http://pypi.python.org/pypi/noisemix

Page 24

https://github.com/noisemix/noisemix
https://github.com/noisemix/noisemix
http://pypi.python.org/pypi/noisemix

Chapter Four: Results

Introduction

Chapter four explores the results from three datasets. The datasets have been
benchmarked before in regards to their performance. Now I will include how
augmenting the new dataset will affect the performance. For each dataset, I have
mentioned how many rows the dataset consisted of, and what the original precision
was. Then I will try the application with some different values for parameters
(version, frequency, whether to include the original data in the mix). The results
are rounded up to four decimal point precision. It is important to note that the
default value for word and sentence perturbation frequency is two and the default
number of times each perturbation is repeated per word or sentence (repeat_num)
is one.

Amazon Reviews

Overall, the data consisted of 4,00,000 rows[7]. I took ten percent for test dataset
(400,000) and the rest was used for training data. The python code to run is
displayed below.

fasttext supervised -input train.ft.txt -output model_amzn

The original precision for different row size of training data is show below.

Precision

10,000 rows 0.8151

20,000 rows 0.8528

30,000 rows 0.8641

40,000 rows 0.8708

50,000 rows 0.8748

Page 25

60,000 rows 0.8784

70,000 rows 0.8811

80,000 rows 0.8834

Here is an example of running the augmentation application on a row from this
dataset.
Test line:
__label__2 Amazing!: LJ smith is a fantastic author who inspires others to create
stories and poetry that shows their true brilliance. Daughters of Darkness has a
special quality about it which induces feeling of love and adventure all at the same
time. I would not be surprised if people respond well to this novel!

Augmented Sentences:
__label__2 Amazing!: LJ smith is a bfantastic author who inspires others to
crePate stories and potry tHhat shows their true brilliance. DDaughters of
DarknUess has a speciall quality about itwhcih indduces feeling of lovee andud
adventure all at the same time. I would not be surprised if people respond welml to
this novvel!
__label__2 Ammazing!: LJ smith is a bfantastic author wOho inspires others to
crePate torries aand potry tHHhat shows their rtue brilliance. DDaughterds of
darknuess has a speciall uality about itwhhcih indduces feeling of lovee andud
adventture all at the same time I would noQt be surprised if people respond welml
to this novvel!
__label__2 Ammazing!: LJ smith is a bfan6astic author wOhk inspires others to
crePate torrixes aaand ppotry ttHHhat shows their wtue brilliance. DDaughterds
respond darknuess has a specall uality aboutt itwhhcih indduces feeling of lovde
andud adventture all at the same time I would noAQt be surprised if people of
welml to this novvvel!

Result

Page 26

10,000 rows

version Precision

1 0.7846

2 0.8290

3 0.8356

1+original 0.8398

2+original 0.8426

3+original 0.8436

20,000 rows
version Precision

1 0.8420

2 0.8553

3 0.8585

1+original 0.8601

2+original 0.8604

3+original 0.8614

The best precision result was for 20,000 rows + original, version =2. So we take
that row and test the performance when applying different frequency of
perturbations for sentence and word parameters.

Word Perturbation
Frequency

Sentence Perturbation
Frequency

Precision

0.1 0.1 0.8613

0.1 0.2 0.8612

0.2 0.1 0.8625

0.2 0.2 0.8604

Page 27

0.3 0.3 0.8616

The best precision is taken (20,000 rows + original, version =2, Word Perturbation
Frequency=0.2, Sentence Perturbation Frequency=0.1) and this time different
values of repeat_num is tested for word and sentence perturbation.

Word Perturbation Repeat Sentence Perturbation

Repeat Precision

1 1 0.8625

1 2 0.8605

2 1 0.8612

2 2 0.8620

Page 28

Language Detection

Overall, the data consisted of 6,00,000 rows [12]. I took ten percent for test dataset
(600,000) and the rest was used for training data. It is important to note that for this
dataset the typo_qwerty as well as add_letter functions were disabled, since they
were depending on the language of the dataset to remain the same.

The python code to run is displayed below.

fasttext supervised -input train.txt -output langdetect -dim 16

The original precision for different row size of training data is show below.

Precision

10,000 rows 0.7081

20,000 rows 0.7691

30,000 rows 0.8076

40,000 rows 0.8285

50,000 rows 0.8437

60,000 rows 0.8518

70,000 rows 0.8590

80,000 rows 0.8630

Here is an example of running the augmentation application on a row from this
dataset.

Test line:

Page 29

__label__eng Tom looked into his knapsack and realized that his computer had
been stolen.

Augmented Sentences:
__label__eng Tom looked into his knapsack and realizeed that his compputer had
been stolen.

__label__eng Tom looked into hSis knnavpsack and reelizead that h8s compputer
had been stolen.

__label__eng om looked into hSis knnavpsack and reelizead that h8s compputer
had beeen stlen.
Result
10,000 rows

version Precision

1 0.6532

2 0.7401

3 0.7656

1+original 0.7535

2+original 0.7867

3+original 0.7997

20,000 rows
version Precision

1 0.7481

2 0.8031

3 0.8174

1+original 0.8158

2+original 0.8338

3+original 0.8426

Page 30

20,000 rows + original, version=3
Word Perturbation
Frequency

Sentence Perturbation
Frequency Precision

0.1 0.1 0.8487

0.1 0.2 0.8491

0.2 0.1 0.8462

0.2 0.2 0.8426

0.3 0.3 0.8366

20,000 rows + original, version =3, Word Perturbation Frequency=0.1, Sentence
Perturbation Frequency=0.2

Word Perturbation Repeat Sentence Perturbation

Repeat
Precision

1 1 0.8491

1 2 0.8477

2 1 0.8444

2 2 0.8425

Page 31

StackExchange Cooking Question

Overall, the data consisted of 15,404 rows [13], which was a relatively small
dataset. I took approximately ten percent for test dataset (1,500) and the rest was
used for training data. It is important to note that for this dataset the precision and
recall value are different and therefore the measure for performance is F-Score.

The python code to run is displayed below.

fasttext supervised -input cooking.train -output model_cooking -lr
1.0 -epoch 25

The original result for different row size of training data is show below.

Precision Recall F-Score

5,000 rows 0.4623 0.2 0.2792

10,000 rows 0.5293 0.2284
0.3191

All (13,904 rows) 0.5660 0.2439
0.3409

Page 32

Here is an example of running the augmentation application on a row from this
dataset.

Test line:
__label__sauce __label__cheese How much does potato starch affect a cheese
sauce recipe?

Augmented Sentences:
__label__sauce __label__cheese How much does po4aot starch affect a ceese
sauce recipe?

__label__sauce __label__cheese Ho much dooes po4aot starch affecta ceesie
zaucDe recipe

__label__sauce __label__cheese Ho much dooes po4aot starch affecta
TceesiezaucDe recipe

Result
5,000 rows

version precision recall F-score

1 0.4310 0.1864 0.2603

2 0.4363 0.1887 0.2635

3 0.4230 0.1830 0.2554

1+original 0.4590 0.1986 0.2772

2+original 0.4530 0.1960 0.2736

3+original 0.4523 0.1957 0.2732

10,000 rows

Page 33

version precision recall F-score

1 0.492 0.2123 0.2966

2 0.5047 0.2177 0.3042

3 0.4853 0.2094 0.2925

1+original 0.5107 0.2203 0.3078

2+original 0.516 0.2226 0.3110

3+original 0.506 0.2183 0.3050

10,000 rows + original, version =2
Word
Perturbation
Frequency

Sentence
Perturbation
Frequency

precision
recall F-score

0.1 0.1 0.5193 0.2240 0.3130

0.1 0.2 0.5107 0.2203 0.3078

0.2 0.1 0.5133 0.2215 0.3094

0.2 0.2 0.516 0.2226 0.3110

0.3 0.3 0.5133 0.2215 0.3094

10,000 rows + original, version =2, Word Perturbation Frequency=0.1, Sentence
Perturbation Frequency=0.1

Page 34

Word
Perturbation
Repeat

Sentence
Perturbation
Repeat

precision recall F-Score

1 1
0.5193 0.2240 0.3130

1 2 0.504 0.2174 0.3038

2 1 0.516 0.2226 0.3110

2 2 0.5087 0.2194 0.3066

Page 35

Chapter Five: Conclusion

Summary
This study provides a new tool for data scientists to modify their datasets by
applying realistic augmentations and improve the performance of their models. The
program includes several functions, mimicking the errors and noise, which can be
in text, and includes variables that can be set up to control the aggressiveness of
those functions. Comparison with existing models on text classification datasets
showed that by providing different version of same rows, the precision would
improve.

Future Work
For future work, I would suggest the following improvements of the thesis and
project:

● Implement grid search to figure out the effect each perturbation has on the
overall performance of the application

● Support more dataset file types
● Support more languages/ keyboard layouts
● Improve speed for application
● Test application with more datasets, e.g. unsupervised learning

Page 36

References

[7] Bittlingmayer, Adam Mathias. “Amazon Reviews for Sentiment Analysis | Kaggle.” ​Countries of the

World | Kaggle​, 24 May 2017, www.kaggle.com/bittlingmayer/amazonreviews.

[9] “Downloads.” ​Download Sentences - Tatoeba​, tatoeba.org/eng/downloads.

[13] Facebookresearch. “Facebookresearch/FastText.” ​GitHub​,

github.com/facebookresearch/fastText/blob/master/docs/supervised-tutorial.md#getting-and-prepar

ing-the-data.

[2] “Image Preprocessing.” ​Keras Documentation​, keras.io/preprocessing/image/.

[12] “Language Identification · FastText.” ​FastText​, fasttext.cc/blog/2017/10/02/blog-post.html.

[5] “List of Options · FastText.” ​FastText​, fasttext.cc/docs/en/options.html.

[1] “Machine Learning Crash Course | Google Developers.” ​Google​, Google,

developers.google.com/machine-learning/crash-course/.

[10] “Optimizing Your Code Using Profilers.” ​JetBrains ​, www.jetbrains.com/help/pycharm/profiler.html.

[11] “Packaging and Distributing Projects.” ​Packaging and Distributing Projects - Python Packaging

User Guide​, packaging.python.org/tutorials/distributing-packages/.

[8] “Seasoned Advice.” ​Seasoned Advice​, cooking.stackexchange.com/.

[6] “Unicode Characters in the 'Punctuation, Other' Category.” ​Hash: Online Hash Value Calculator ​,

www.fileformat.info/info/unicode/category/Po/list.htm.

[4] “FastText.” ​Facebook Research​, research.fb.com/fasttext/.

[3] Billa, Jayadev. “Improving LSTM-CTC based ASR performance in domains with limited training

data”, 2017

Page 37

