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Abstract 
 

Implementation and Testing of Local Binary Pattern Histogram as a Method of Face 

Recognition 

  

Author: Rafi Boghosians 

 

The popularity of the cameras in smart electronic devices led the industries to use them more 

efficiently. Facial recognition research is one of the favorite topics among practitioners and 

researchers and is a key to the future of smart technologies. This study is an attempt to indicate the 

effectiveness of existing facial recognition algorithms using OpenCV library and C# programming 

language. This thesis aims to investigate several facial recognition algorithms and make 

comparisons in respect of their accuracy. We will use Viola-Jones Face Detection algorithm for 

detecting the face, and the Eigenfaces, Fisherfaces, Local Binary Pattern Histogram algorithms for 

recognizing the face.  

The thesis covers the complete process of face recognition, including face detection, preprocessing 

of images, the comparison of the algorithms mentioned above and the real-time application of 

Local binary pattern histogram. 

We will discuss the concept of each algorithm, and comparative analysis will reveal the most 

accurate one. 

The development of the test cases will indicate that among the compared facial recognition 

algorithms the Local Binary Pattern Algorithm has the highest accuracy to identify faces. 

 

Keywords:  

Local Binary Pattern Histogram, Eigenface, Fisherface, Face Detection, Facial Recognition, 

EmguCV, Computer Vision, Viola Jones, OpenCV 

 

Abbreviations: 

LBPH - Local Binary Patterns Histograms  

PCA - Principal Components Analysis 

LDA - Linear Discriminant Analysis 

OpenCV – Open Source Computer Vision Library 
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Licenses for Software and Content 
 

Software Copyright License (to be distributed with software developed for masters 

project) 
 

Copyright (c) 2018    Rafi Boghosians  

 
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and 

associated documentation files (the "Software"), to deal in the Software without restriction, 

including without limitation the rights to use, copy, modify, merge, publish, distribute, 

sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is 

furnished to do so, subject to the following conditions: 

 

The above copyright notice and this permission notice shall be included in all copies or 

substantial portions of the Software. 

 

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT 

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, 

WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 

DEALINGS IN THE SOFTWARE. 

 

(This license is known as “The MIT License” and can be found at 

http://opensource.org/licenses/mit-license.php) 

 

Content Copyright License (to be included with Technical Report) 

 

LICENSE  

 

Terms and Conditions for Copying, Distributing, and Modifying  

 

Items other than copying, distributing, and modifying the Content with which this license was 

distributed (such as using, etc.) are outside the scope of this license.  

 

1. You may copy and distribute exact replicas of the OpenContent (OC) as you receive it, in any 

medium, provided that you conspicuously and appropriately publish on each copy an appropriate 

copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License 

and to the absence of any warranty; and give any other recipients of the OC a copy of this 
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License along with the OC. You may at your option charge a fee for the media and/or handling 

involved in creating a unique copy of the OC for use offline, you may at your option offer 

instructional support for the OC in exchange for a fee, or you may at your option offer warranty 

in exchange for a fee. You may not charge a fee for the OC itself. You may not charge a fee for 

the sole service of providing access to and/or use of the OC via a network (e.g. the Internet), 

whether it be via the world wide web, FTP, or any other method.  

 

2. You may modify your copy or copies of the OpenContent or any portion of it, thus forming 

works based on the Content, and distribute such modifications or work under the terms of 

Section 1 above, provided that you also meet all of these conditions:  

 

a) You must cause the modified content to carry prominent notices stating that you changed it, 

the exact nature and content of the changes, and the date of any change.  

 

b) You must cause any work that you distribute or publish, that in whole or in part contains or is 

derived from the OC or any part thereof, to be licensed as a whole at no charge to all third parties 

under the terms of this License, unless otherwise permitted under applicable Fair Use law.  

 

These requirements apply to the modified work as a whole. If identifiable sections of that work 

are not derived from the OC, and can be reasonably considered independent and separate works 

in themselves, then this License, and its terms, do not apply to those sections when you distribute 

them as separate works. But when you distribute the same sections as part of a whole which is a 

work based on the OC, the distribution of the whole must be on the terms of this License, whose 

permissions for other licensees extend to the entire whole, and thus to each and every part 

regardless of who wrote it. Exceptions are made to this requirement to release modified works 

free of charge under this license only in compliance with Fair Use law where applicable.  

 

3. You are not required to accept this License, since you have not signed it. However, nothing 

else grants you permission to copy, distribute or modify the OC. These actions are prohibited by 

law if you do not accept this License. Therefore, by distributing or translating the OC, or by 

deriving works herefrom, you indicate your acceptance of this License to do so, and all its terms 

and conditions for copying, distributing or translating the OC.  

 

NO WARRANTY  

 

4. BECAUSE THE OPENCONTENT (OC) IS LICENSED FREE OF CHARGE, THERE IS NO 

WARRANTY FOR THE OC, TO THE EXTENT PERMITTED BY APPLICABLE LAW. 

EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS 

AND/OR OTHER PARTIES PROVIDE THE OC "AS IS" WITHOUT WARRANTY OF ANY 

KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE 

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 

PURPOSE. THE ENTIRE RISK OF USE OF THE OC IS WITH YOU. SHOULD THE OC 

PROVE FAULTY, INACCURATE, OR OTHERWISE UNACCEPTABLE YOU ASSUME 

THE COST OF ALL NECESSARY REPAIR OR CORRECTION.  
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5. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN 

WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY 

MIRROR AND/OR REDISTRIBUTE THE OC AS PERMITTED ABOVE, BE LIABLE TO 

YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR 

CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE 

OC, EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE 

POSSIBILITY OF SUCH DAMAGES.   

 

(This license is known as “OpenContent License (OPL)” and can be found at 

http://opencontent.org/opl.shtml) 
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1.  Introduction 
Nowadays cameras are widely spread in our society. We can see them in streets, in restaurants, in 

supermarkets and other public places. These cameras are more often used for security purposes. 

Cameras are everywhere. The number of devices per person is increasing, and they usually possess 

a camera. For example, all smartphones and tablets have one. People use cameras for recording 

themselves, capturing wonderful moments and taking pictures of beautiful sights. However, it is 

possible to use them for many other goals. 

Through face detection and recognition, cameras have got commercial and security applications 

in identity validation and recognition. An example of a software that uses facial recognition for 

security purposes is MasterCard Identity Check Mobile app [1]. This application verifies online 

payments through facial recognition. Businesses can make online payments without cards or 

passwords. App users can verify their payments by a picture of their faces. In addition to verifying 

a payment, facial biometrics can also be integrated with physical objects. In future, consumers may 

be able to get into their houses, cars and other secure locations by merely looking at them. Jaguar 

is already working on its face and gait recognition system called walking gait ID [2] – a potential 

parallel to facial recognition technology. 

We can see applications of facial recognition systems in the healthcare industry as well. For 

instance, AiCure [3], an AI company uses computer vision and facial recognition technology to 

improve medication adherence practices. The company’s software is delivered through an app, 

which reportedly performs three main functions, it identifies the patient, the prescribed medicine 

and can visually confirm if the patient has ingested the medicine. 

In the marketing sector, application of facial recognition technology can support advertisers to get 

closer to their target markets and improve customer loyalty. For example, the app Facedeals [4] 

integrates facial recognition with customers’ Facebook profiles aiming to inform customers about 

special offers from businesses they often visit. Specifically, cameras at the business entrance would 

recognize customers as they enter. At the same time, the customer would receive a notification of 

a special offer based on his/her Facebook “Like” history.  

Currently one of the biggest companies that use computer vision is Google. Google has the most 

applicable and most comprehensive image search on the web. The search engine of Google can 

show images related to a search even if they have not been tagged. This is because the engine can 

identify what is shown in the image. Another example is the facial recognition performed by 
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Facebook which is called when a user uploads a new photo. Facebook detects faces in the picture 

and recognizes the persons. Then, it suggests the user tag him/her.  

All the examples mentioned above use computer vision, but also, they use machine learning 

algorithms. These algorithms are constructed so that a machine can learn from and make 

predictions on data provided. The larger the provided data is, the better the results are. Google and 

Facebook provide the most precise information due to the amount of data. They collect a vast 

amount of training data which increases the efficiency of machine learning. 

So, the companies possess an enormous amount of data and construct robust algorithms to perform 

the facial recognition accurately. As we can see, some of these algorithms are public. For instance, 

Google made public their method of face recognition and clustering called FaceNet [5]. Later, 

Facebook did the same with their facial recognition system DeepFace [6]. These algorithms use 

different approaches and provide a certain level of accuracy. So, what are the distinctive 

characteristics of these approaches? Is it possible to recognize a face accurately through these 

algorithms? Can we measure and compare the accuracy and find out whether the results are 

reliable? 
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2.  Goals and Objectives 
 

This thesis aims to study the different existing facial recognition algorithms. The evaluation is 

limited to those algorithms that are mostly used by the commercial sector and are open source. 

Every algorithm will be trained with the identical data set. Then, we will use a webcam to test 

those algorithms. Comparative analysis of the test results will indicate the most accurate face 

recognition algorithm. Subsequently, the software implemented by C# Programming language 

using .Net Windows Form Application and EmguCV library will demonstrate the reliability of the 

chosen algorithm. 

For face detection, we will use Viola-Jones Object Detection technique, which is based on the idea 

that rather than identifying whether the image contains a face, we can more quickly determine 

whether the picture does not contain a face because eliminations can be done quickly, although 

recognition of faces will require more time. 

For face recognition, we will examine Fisherfaces, Eigenfaces and Local Binary Patterns 

Histograms algorithms. 

We will describe the steps of the recognition process briefly to provide a sufficient understanding 

of the importance of each step. The lightning and other conditions affect the quality of the image 

and can play a significant role in the test results. Therefore, we will provide information about 

those conditions as well.  

The most complicated step is teaching the machine to recognize faces. We should note that the 

training data should contain as many pictures as possible taken from different angles. Using the 

provided data and machine learning algorithms, the computer will learn how to differentiate faces. 

These machine learning algorithms use different approaches, such as statistical approach or search 

for patterns. The algorithms will be compared, and their strengths and weaknesses will be 

discussed.  

Finally, we will demonstrate a desktop application, which will show the reliability and 

effectiveness of the chosen Face Detection and Recognition method. 
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3.  Application Specifications 
 

For developing the application, we use EmguCV [7] library which is cross-platform .Net wrapper 

to the standard OpenCV image processing library. It allows the OpenCV functions to be called 

from .NET compatible languages such as C#, VB, IronPython, etc. The wrapper can be compiled 

by Visual Studio, Xamarin Studio, and Unity; it can run on Windows, Linux, Mac OS X, iOS, 

Android and Windows Phone. 

The application is written in C# language on the .NET framework 4. It is based on Windows Form 

application which is based on MVVM design pattern. 

The whole application consists of two forms (GUI) and two C# classes.  

 Main Form.cs 

o Is responsible for displaying the result of face recognition. 

 Traning Form.cs.  

o Is responsible for training the data set. 

 Program.cs 

o The main entry point for the application. 

 Classifier_Train.cs 

o Saving and Loading datasets (Just for more readability of the code). 

 

3.1.  Distribution of classes 
 

Main Form.cs 

 Declaration of the variables related to the displaying the result of recognition. 

 Loading the training data. 

 Initializing the FrameGrabber event. 

1. Get the current frame from the device which captures the picture 

2. Convert it to Grayscale 

3. Detect the face using Haar-cascade EmguCV classifier 

4. Focusing on the face and painting a Red color rectangle around the face 

5. Loading Recognition of the face using EmguCV face recognizer 

6. Display the label for each detected and recognized face 
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Traning Form.cs 

 Declaration of the variables related to training data set. 

 Initializing the FrameGrabber event. 

1. Get the current frame from the device which captures the picture 

2. Convert it to Grayscale 

3. Detect the face using Haar-cascade classifier of EmguCV 

4. Focusing on the face and painting a Red color rectangle around the face 

 Saving the new face. 

1. Each image is saved by generating random number so, we will be able to train our data 

set with the same person name but different pictures 
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2. The default location for training data is within the TrainedFaces. The folder also 

includes a single XML file that includes tags for the person name. The XML file has 

the following structure: 

 

 

 

 

XML file example 

<FACE> 

    <NAME>Rafi</NAME> 

    <FILE>face_Rafi_909797833.jpg</FILE> 

</FACE> 

<FACE> 

    <NAME>Rafi</NAME> 

    <FILE>face_Rafi_1560838153.jpg</FILE> 

</FACE> 

<FACE> 

    <NAME>Rafi</NAME> 

    <FILE>face_Rafi_64394826.jpg</FILE> 

</FACE> 

<FACE> 
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    <NAME>Rafi</NAME> 

    <FILE>face_Rafi_715435146.jpg</FILE> 

</FACE> 

 

The Gray Scale image examples 

 

 

 

 

 

 

3.2.  The logical flow of the application 
 

The new FaceRecognizer is a global constructor that allows Eigen, Fisher, and LBPH classifiers 

to be used together. The class combines common method calls between the classifiers. 

FaceRecognizer recognizer = new LBPHFaceRecognizer(radius, neighbors, grid_x, grid_y, 

threshold); 

1. Firstly, we need to create an variable of a Reference type FaceRecognizer recognizer. 

FaceRecognizer is a global constructor that allows Eigen, Fisher, and LBPH classifiers to 

be used together. The class combines common method calls between the classifiers.  

 
using Emgu.Util; 

 
namespace Emgu.CV 

{ 

    public abstract class FaceRecognizer : UnmanagedObject 

    { 
        protected FaceRecognizer(); 

 

        public void Load(string fileName); 
        public PredictionResult Predict(IImage image); 

        public void Save(string fileName); 

        public void Train(IImage[] images, int[] labels); 
        protected override void DisposeObject(); 

 

        public struct PredictionResult 

        { 
            public int Label; 

face_RafiBoghosians_

1638985040 

face_RafiBoghosians_

1786709253 
face_RafiBoghosians_

2133106717 

face_RafiBoghosians_

566139861 

face_RafiBoghosians_

765022211 

face_RafiBoghosians_

507226928 
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            public double Distance; 
        } 

    } 

} 
 

2. Secondly, we should create an object of type new LBPHFaceRecognizer 

(1, 8, 8, 8, 100). If we do not set any parameters, the program will use its default 

settings. Here is a description of the five parameters. 

 Radius – The radius used for building the Circular Local Binary Pattern. The default value 

is 1. 

 Neighbors – The amount of sample points to construct a Circular Local Binary Pattern. The 

value suggested by OpenCV Documentations is ‘8’ sample points. Acknowledged: the 

more sample points are included, the higher the computational cost is. 

 GridX– The number of cells in the horizontal direction, 8 is a standard value used in 

EmguCV documentations. The more cells, the finer the grid, the higher the dimensionality 

of the resulting feature vector. 

 GridY – The number of cells in the vertical direction, 8 is a standard value used in EmguCV 

documentations. The more cells, the finer the grid, the higher the dimensionality of the 

resulting feature vector. 

 Threshold – The threshold applied in the prediction. If the distance to the nearest neighbor 

is larger than the threshold, this method returns -1. 

If the Distance calculated is above this value, the Predict() method will return a -1 value 

indicating an unknown. 

3. Third, we should train the algorithm. To do that we need to call the Train(IImage[] images, 

int[] labels); function passing a slice of images and a slice of labels by the parameters. 

All images must have the same size. The tags (labels) are used as IDs for the images, so if 

you have more than one model of the same face, the labels should be the same. 

4. The Train() function first checks if all images of the face have the same size. If somehow 

there is an image which does not have the same size, the method will return an error, and 

thus, the algorithm will not be trained. 

5. The next step is applying the basic LBP operation by changing each pixel based on its 

neighbors using a default radius of one with eight neighbors. The example of LBP process 

is described below: 
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6. After processing the LBP operation, we extract the histograms of each image based on the 

number of grids (GridX and GridY) which are passed by parameter. After obtaining the 

histogram of each region, we collect all the individual histograms and create a new one that 

will represent the whole image. 

 

      

 141  

   

1 0 0 

0  1 

1 0 1 

   

   

   

200 50 50 

50 90 100 

160 70 210 

3 x 3 pixels Threshold 90 Binary 10001101 Decimal 141
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7. In this stage, we have all the necessary stored data of faces, labels, and histograms. 

8. We can say that the algorithm is already trained, and we can Predict a new face. 

9. To predict a new image, we need to call the PredictionResult Predict(IImage image); 

function and pass the image as parameter. The Predict() function will extract the histogram 

from the new model and will compare it to the histograms that are already stored and will 

return the label and distance corresponding to the closest histogram. Note: It uses the 

Euclidean distance metric as the default metric to compare the histograms. The closer to 

zero is the distance; the higher is the confidence. 

The Predict() function returns 2 values: 

 int Label: The label corresponding to the predicted image. 
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 double Distance: The distance between the histograms from the input test image and 

the matched image (from the training set). 

 

We use the Label to check if the algorithm has correctly predicted the image. But in a real-

world application, it is not feasible to manually verify all images, so we can use the Distance 

to figure out if the algorithm has predicted the image correctly. 
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4.  Methodology and Theoretical Background 

 
OpenCV 

 

OpenCV (Open Source Computer Vision) is free for use, cross-platform programming library 

mainly aimed at real-time computer vision [8]. OpenCV, initially developed by Intel, was later 

supported by Willow Garage which is robotics research lab and technology incubator and is now 

maintained by Itseez.  

OpenCV is written in C++, and its interface is in C++. There are also bindings in Java, Python, 

and MATLAB. However, the API for these interfaces can be found in other languages such as C#, 

Perl, Haskell, and Ruby [9]. 

OpenCV's application areas include: 

Egomotion estimation: Egomotion is defined as the 3D motion of a camera within an environment 

[10]. An example of egomotion estimation can be estimating a car's moving position relative to 

street signs or lines on the road being observed from the vehicle itself. 

Facial recognition system: A facial recognition system originates from a purpose-built union of 

high-end hardware components and efficient software to automatically distinguish or verify an 

individual from a digital image, as needed in many security and inspection installations. The 

process of identification is done by comparing the facial features extracted from an image with 

those features previously stored in a facial database. 

Gesture recognition: Gesture recognition aims to interpret human gestures using mathematical 

algorithms. Gestures can originate from body motion but mostly originate from the hand or face. 

Currently, the focus of this field includes hand gesture recognition and emotion recognition [11]. 

 

4.1.  Face Detection 
 

As can be supposed, detecting a face is more straightforward than recognizing a face of a specific 

human. To be able to find out that a particular image contains a face (or several), we need to be 

able to describe the overall structure of a face. Fortunately, human faces do not significantly vary 

from each other; we all have eyes, nose, mouth, and chin. So, all of these compose the common 

structure of a face. 
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Consider the following five figures: 

 

Each of these elements represents a general feature of a human face. So, combining all these, we 

will receive something that resembles a face.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 
We can conclude whether the image contains a face or not. Note that this does not have to be a 

precise match. We need to know whether, roughly, each of these elements corresponds to some 

part of the image. The technique is called Template Matching. 
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This method is designed in such a way that it first checks the rough features and only if these 

features match, it will continue to the next iteration. In each iteration, it can quickly ignore areas 

of the picture which do not match a face and keep checking areas which it is not sure about. In 

other words, rather than finding whether the image contains a face, we can more quickly determine 

if the picture does not contain a face, since eliminations can be done quickly, while approval of 

faces will require more time. This process is called cascading. The method depicted above is an 

over-simplified description of the Viola-Jones method (also known as Haar cascades [12]). 

The Viola-Jones object detection framework [13] is the first object detection framework to provide 

competitive object detection rates in real-time which is published in the paper, "Rapid Object 

Detection using a Boosted Cascade of Simple Features" in 2001. The primary motivation of the 

problem was face detection, though the algorithm can be trained to detect a variety of object 

classes, such as cars, people, furniture, etc. The approach is based on Machine Learning where a 

cascade function is trained from lots of positive and negative images. Then, it is used to detect 

objects in other models. 

The primary goal was the detection of faces in an image. A human can do this quickly, but a 

computer needs precise instructions and computation. The Viola-Jones algorithm requires the full 

view frontal of faces. Hence, to be detected, the entire front side of the face must point towards 

the camera and should not be inclined to either side. Although it seems, these constraints could 

somehow reduce the algorithm's utility, since the detection step is usually followed by a 

recognition step, in practice these limits on pose are quite acceptable. 

 



19 

 

4.2.  Face Recognition 
 

Face recognition is an easy task for people. Experiments [14] show that even three-day-old infants 

can distinguish familiar faces. Can a machine perform this? How does our brain analyze and 

encode an image? David Hubel’s and Torsten Wiesel’s brain research shows that our brain has 

nerve cells which are responding to specific local features of a scene, such as angles, edges, lines 

or movements. Still, we don't see the world in scattered pieces, which means, our brain somehow 

combines the various sources of information into useful patterns. Automatic face recognition is 

performed by extracting meaningful features from an image, putting them into a useful 

representation and performing some classifications on them. 

Automated face recognition systems have developed over time. They have used different 

approaches to recognize faces, and these approaches have evolved to reach a higher level of 

accuracy. One of the facial identification methods uses geometric features of a face. The first [15] 

automated facial recognition systems used facial marks (position, the shape of eyes, ears, nose, 

etc.) to build a feature vector (distance, the angle between the marks). The system then calculated 

the Euclidean distance between feature vectors of an image and identified the face. The drawback 

of this method was that despite the use of robust algorithms it was still very complicated to 

precisely register the facial marks. Further experiments have carried out using geometric face 

recognition methods. Some of those experiments [16] used large datasets and a 22-dimensional 

feature vector. However, it became obvious, that geometrical features alone may not carry 

sufficient information for face recognition. 

Recently various methods appeared for local feature extraction. To avoid the high-dimensionality 

of the input data, only local regions of face images are described. Consequently, the obtained 

features are strong against partial obstruction, lighting, and small sized sample. Local feature 

extraction uses the following algorithms: Gabor Wavelets [17], Discrete Cosine Transform [18], 

and Local Binary Patterns [19]. Researchers still do not answer the question what the best way to 

preserve spatial information when applying a local feature extraction is? 

The difference between face recognition and detection is that in detection we need to determine if 

there is some face in the picture, but in recognition, we need to find out whose face it is. 

OpenCV provides three methods of face recognition:  

 Eigenfaces  

 Fisherfaces  
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 Local Binary Patterns Histograms (LBPH).  

All three algorithms do the recognition by comparing the face with some training set of already 

recognized faces. In the training set, we provide the algorithm of faces and tell it to who they 

belong. Then, the algorithm uses the training set to recognize unknown faces. Each of the methods 

mentioned above uses the training set a little differently. The first two algorithms (Fisherfaces and 

Eigenfaces) find a mathematical description of the most dominant elements of the training set as a 

whole, while LBPH analyzes each face in the training set separately and independently. 

 

4.2.1. Eigenfaces  
 

Eigenfaces is a method of performing facial recognition based on a statistical approach. Sirovich 

and Kirby [20] first developed the concept of utilizing principal components to express human 

faces and then used by Turk and Pentland [21] for face detection and recognition. This method 

aims to extract the principal components which mostly affect the variation of the images. This is a 

holistic (as opposed to a parts-based or feature-based) approach: the method for predicting a face 

is based on the entire training set. There is no specific analysis of images from two different 

classes. A class represents a person. Pre-processed pictures with grayscale are needed to train the 

machine learning algorithm. Each pixel of an image represents one dimension, it means a 100 x 

100 pixels image is defined into 100 x 100= 1000 dimensions. Eigenfaces uses Principal 

Component Analysis (PCA) to reduce the number of dimensions while maintaining the most 

significant information. The training part of Eigenfaces is to calculate the eigenvectors and the 

related eigenvalues of the covariance matrix of the training set. 

The motivation of Eigenfaces is as follow: 

 Takeout the relevant facial information, which may or may not be directly related to 

the human intuition of facial features such as the eyes, nose, and lips. One way to do 

so is to capture the statistical variation between face images.  

 Represent face images effectively. As means to reduce the space and computation 

complexity, each face image can be represented by a small number of parameters. 

Here is step by step description of how eigenfaces work.  

Eigenface do PCA on bitmap images of human faces, so we have a dataset. 
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Every bitmap face here is a data instance. Here we can see an example of data instance.   

 

 

 

 

 

 

 

 

 

We assume that it is a k x k grayscale image. So, each pixel here is just a number between 0 and 

255 which represents the level of grayness. Now we can take the amount of each pixel to form a 

single vector out of each instance. Since vectors or some attributes must represent all of our 

instances, we can unfold the bitmap into one large vector. So, we are going to take the first row of 

pixels, and that will become the primary K attributes in our vector, the second row becomes the 
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second K, and the last row becomes the last K. Thus, we will end up with a vector that has K 

squared dimensions. 

 

 

  

 

 

 

 

 

The above is an example of one instance. After doing this operation for every instance of our 

dataset, we will end up with a matrix which has K2 rows. So, these are our new attributes of pixels, 

and we have N columns that represent the individual instances of our whole dataset. 

   

 

 

 

 

 

 

 

In this stage, we do PCA on our data. As a result, we will have specific number m of these new 

dimensions of eigenvectors with the highest eigenvalues.  

 

 

 

 

 

 

 



23 

 

It is interesting that we are going to have m columns which are our new dimensions, but each 

column is K2 dimensional. So, each column substantially corresponds to the original positions of 

pixels in a bitmap. Since the attributes here are just pixels and we have K2 of them. After doing 

PCA we still have K2, each one of the eigenvectors has K2 dimensions which are as many as pixels. 

As attributes should be numbers, we can take and plot them and see what they look like. We choose 

one of the eigenvectors, it has K2 numbers and folds it back into a bitmap. So, we take the first K 

attributes make it into a row of pixels, make it to the second row of pixels and all the way down to 

the end. And as a result, we will end up with something like a ghostly face.  

 

Now, what is our new image? It indeed does not look like an average face of any kind, and it 

should not be an average face since in the first step of PCA we subtract the mean, so we have 

subtracted the average face. Thus, this bitmap is the first principal component which is showing 

the most prominent deviation from the mean in this dataset. The mean is prototypical average 

looking face, and this representation of the face is the dimension along which people seem to vary 

the most from the mean. In the image below we can see eigenvectors of the whole dataset. The 

feature vectors can later be used for classification. The number of Eigenfaces to use for 

constructing the feature vectors is a free parameter of the technique. 
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Eigenface is a practical method for face recognition. Thanks to the simplicity of its algorithm, we 

could implement the Eigenface recognition system easily. Likewise, it is efficient for processing 

in both time and space. PCA reduces the dimension size of an image considerably in a short period. 

Eigenface has high accuracy near 90% for frontal faces, though, there has a high correlation 

between the training data and the input data. The accuracy of Eigenface depends on many factors. 

Since it takes the pixel value as a comparison for the projection, the precision would decrease with 

changing light intensity. Apart from, orientation and scale of an image will affect the accuracy 

significantly. Preprocessing of the image is necessary to achieve a satisfactory result.  The 

Eigenface method was an essential step towards appearance-based recognition in computer vision. 

However, the technique is sensitive to variations in lighting, scale, pose, facial expression, and 

occlusion. To work effectively, the face must be presented in frontal view, at the appropriate scale, 

in similar lighting conditions, in a defined (typically neutral) expression, and unconcluded. The 

other disadvantage of this approach is that finding the eigenvectors and eigenvalues are time-

consuming. 

 

4.2.2. Fisherfaces 
 

One way to illustrate the input data is by determining a subspace which represents most of the data 

variance as we already discussed in eigenface approach. This process can be done by using 
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Principal Components Analysis (PCA). When applied to face images, PCA produces a set of 

eigenfaces. These eigenfaces are the eigenvectors associated to the most significant eigenvalues 

of the covariance matrix of the training data. PCA approach is indeed a powerful way to represent 

the data. It guarantees the data variance is preserved while excluding unnecessary existing 

correlations between the original features (dimensions) in the sample vectors. 

Fisherfaces [22] is similar to Eigenfaces in that it performs a linear mapping from the high 

dimensional image space to a lower dimensional subspace. The major difference is that Fisherfaces 

uses linear discriminant analysis (LDA) instead of PCA.  LDA is like PCA, but it focuses on 

maximizing the separatability among known categories. 

The idea here is that LDA keeps information that differentiates classes and rejects data that 

accounts for variations within single classes. Similar to PCA, the approach produces a set of 

models called Fisherfaces. Feature vectors composed of the contributions of each Fisherface to the 

reconstruction of the image.   

The intuition here is that instead of looking at linear combinations of pixels that explain the 

variance in the data which is called Eigenfaces, the Fisherfaces looks for linear combinations of 

pixels that define the variance between people. That means if something is useful for describing 

the difference between various instances of the same person, it won't count, wheres if something 

is helpful to discriminate between different people - it will. It's quite intuitive. Think of an example 

where we try to distinguish between different people based on weight and height, and we have 

multiple measurements of the same people every couple of days. "eigenfaces" might consider 

weight to be a useful feature because it discriminates between repeated measurements. Fisherfaces 

would look on to the height signal because it's robustly helpful to distinguish between people. Here 

is the example of a sample of input data and corresponding output Fisher face images. 



26 

 

 

 

 

 

 

 

 

 

 

 

 

Fisherface could classify the training set to deal with various people and various facial expression. 

We could have higher accuracy in facial expression than Eigenfaces method. Moreover, Fisherface 

removes the first three principal components which are responsible for light intensity changes: it 

is more steady to light intensity. Fisherface is more complicated than Eigenface in finding the 

projection of face space. Calculation of ratio of between-class scatters to within-class scatter needs 

lots of processing time. Finally, due to the demand for better classification, the dimension of 

projection in face space is not as compact as Eigenface. As a result, it consumes larger storage of 

the face and more processing time in recognition. 

 

4.2.3. Local Binary Pattern Histogram 

Eigenfaces and Fisherfaces take a kind of holistic approach to face recognition. We handle our 

data as a vector somewhere in a high-dimensional image space. We know that high-dimensionality 

has problems, so a lower-dimensional subspace is identified, where probably, useful information 

is saved. The Eigenfaces approach maximizes the total scatter, which can lead to problems if an 

external source creates the variance because components with a maximum variance over all classes 

are not necessarily useful for classification. So, to preserve some discriminative information we 

applied a Linear Discriminant Analysis and optimized as described in the Fisherfaces method. The 

Fisherfaces method worked relatively better at least for some scenarios. 
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The conditions in our real life is not perfect. We cannot guarantee perfect light settings in our 

images or lots of different photos of a person. So, what can we do if there is only one image for 

each person? Our covariance estimates for the subspace may be wrong, so will the result of 

recognition also be false? The experiment [23] shows that the Eigenfaces method had a 96% 

recognition rate on the AT&T Facedatabase [24] in which for every person there were 10 different 

images from different angles. But the question is how many photos do we need to get such effective 

estimates? Below we can see recognition rates of the Eigenfaces and Fisherfaces methods on the 

AT&T Facedatabase. 

 

 

 

 

 

 

 

Therefore, to have high recognition rates, we need a minimum of 9 images of each person, and the 

Fisherfaces method cannot be helpful in this situation.  

Local Binary Pattern [25] is a simple meanwhile so efficient texture operator which labels the 

pixels of an image by thresholding the neighborhood of each pixel and observes the result as a 

binary number. Due to its discriminative power and computational simplicity, LBP texture 

operator has become a favorite approach in various applications. It can be seen as a combining 

approach to the traditionally divergent statistical models of texture analysis. Perhaps the essential 

feature of the Local Binary Pattern operator in real-world applications is its robustness to 

monotonic gray-scale changes caused, for example, by illumination variations. Another valuable 
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feature is its computational simplicity, which makes it applicable to analyze images in challenging 

real-time conditions. 

The primary idea for developing the LBP operator was that two-dimensional surface textures could 

be described by two complementary measures: local spatial patterns and grayscale contrast. The 

initial LBP operator (Ojala et al. 1996) creates labels for the pixels of the image by thresholding 

the 3 × 3 neighborhood of every pixel with the central value and considering the result as a binary 

number. The histogram of these 28 = 256 various labels can then be used for describing a texture. 

This operator used jointly with a simple local contrast measure delivered excellent performance in 

unsupervised texture partition [26]. After this, many related approaches have been evolved for 

color and texture partitioning. 

For the face recognition, the algorithm also requires grayscale images for processing the training 

set. On the contrary to the previous two algorithms, this one is not a holistic approach and treats 

each picture of data set as a unit. As we already discussed, LBPH aims to work by blocks of 3 by 

3 pixels. The neighbor's value will be subtracted from the central value, and as a result, each 

neighbor who has a negative value will be set the 0 otherwise 1 (Figure below). When all the 

comparisons have been completed, each result will be multiplied by a weight. Each pixel weights 

the power of two from 20 to 27. Each pixel in the center of a 3 x 3 square has eight neighbors. These 

eight pixels represent one byte which explains the reason for using these weights. The weights are 

affected in a circular order. It doesn’t matter which weight is affected to which pixel, however, the 

weight of a pixel does not change. For example, if the pixel top left weights 128, it will keep this 

weight for all the comparisons in the picture. Then, the sum of the weights is calculated and 

becomes the value of the pixel in the middle of the square. The figure below shows the results of 

the comparisons and the weight which is related to each pixel. 
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When this process is completed for each part of the image, the image is divided into a certain 

number of regions. Then, a histogram is pulled out from each area, and all the histograms are 

concatenated. For recognizing a face accurately, the same process is performed, and the final 

histogram is compared to each final histogram in the training data. The label related to the closest 

histogram is the prediction of the algorithm. As for the Histogram of Oriented Gradients detector, 

this algorithm is not sensitive to a variation of luminosity. 
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By definition, the LBP operator is robust 

against monotonic gray scale 

transformations. We can merely show this by 

looking at the LBP image of an artificially 

modified image. 
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5.  Tests 
 

We should consider different factors when comparing the algorithms. Several tests will be done 

with various modifications in the training set such as the number of persons, the number of pictures 

per person and a change in the background lighting. The training set consists of faces with various 

emotional gestures. The algorithms which will be used for the test are Eigenfaces, Fisherfaces, and 

local binary patterns histograms. 

To test how accurate each algorithm works in the same environment with the same lighting 

conditions and how each algorithm reacts to the pictures from another place we will split the test 

into two stages. 

1. In the first phase, the training data of a person will be in the same environment as the test 

data. In other words, the pictures are taken in the same room and with the same lighting 

conditions.  

2. In the second stage, the images from the training data and the test data will not be from the 

same environment. The photos can be taken in another place and where the luminosity is 

different.  

We will label all the picture. So, we will be able to compute the percentage of accuracy or 

inaccuracy of each algorithm. If the prediction result is equivalent to the label of the training set, 

the algorithm predicted the person accurately. All the photos in training set are captured with a 

Dell Inspiron 15 3542 laptop webcam. OpenCV haar-cascade does the face detection part.  

Although it is not within the scope of this paper to test face detection part which is done by the 

haar-cascade approach, however, we do some tests. 

Here is the picture which the program can adequately detect and track the image. 
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If we try to cover the part of the face like eyes, mouth, the program will not be able to detect the 

face. Below, we can see the negative side of this approach. 

 

 

 

But it can successfully work when we cover the half of the one eye. 

 

 

 

 

 

 

 

 

 

In the dynamic environment, the algorithm will not work when the face deviates is less than 45 

degrees. 

 

 

The algorithm does not work when there is strong lightning source behind the face. 
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However, the Viola-Jones algorithms have high performance when we test it in a static 

environment. The left picture was just captured in Spring of 2016 in front of AUA Paramaz 

Avedisian Building and on the right side we had Solvay Conference in 1927. Both images tested 

with Object Detection using Haar feature-based cascade classifiers of OpenCV library. 

 

When we talk about dynamic face recognition, everything becomes more complicated. In the static 

environment, we can have more precise results, and we can make a better conclusion based on our 

findings. But in dynamic recognition, a little bit of changing in the environment, facial feature or 

distance from the camera may bring false results. Below, we represent the part of the training set 

which we use for our experiments. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



34 

 

Face recognition testing results 

 
The first figures show the result obtained by testing all the three algorithms in the same 

environment. The graphs represent the percentage of accuracy for each test. This percentage is 

computed by comparing the number of images that have been correctly recognized and the total 

number of images in the training set.  The first observation that can be done in first figure is the 

increase of the accuracy when the number of images per person is growing. The first two 

algorithms which have statistical approach have less accuracy than LBPH. However, they still 

have an accuracy higher than 60%. 

 

 
 

The second figure shows the result obtained by testing all the three algorithms in different 

environments. The graphs represent the percentage of accuracy for each test. This percentage is 

computed by comparing the number of images that have been correctly recognized and the total 

number of images in the training set.  We can see that the performance of all the approaches 

dramatically decreases in relation to the first figure. The Eigenfaces and Fisherfaces recognized 

only the third row. LBPH recognized the third, fifth, sixth, seventh and tenth rows.  
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6.  Conclusion 
 

Eigenfaces, in both stages of the test, did not demonstrate remarkably good results in case of 

increasing the number of subjects.  Nevertheless, growth in the size of the training set contributes 

to recognizing more faces. Eigenfaces consumed less memory and more rapid computation speed 

rather than Fisherfaces. The remarkable disadvantages of Eigenfaces were sensitivity to light and 

facial expressions. 

Fisherfaces had better outcomes in the second stage with doubled amount of dataset. However, its 

behavior was relatively the same as Eigenfaces in the first stage of the test. This algorithm was 

relatively insensitive to light compared to Eigenfaces but consumed more memory. 

LBPH always had 100% in the first phase. In the second phase, this algorithm had a dramatic drop 

in its accuracy compared to the first stage. An increase in the number of subjects did not 

dramatically change its predictions. In each phase, an increase in the training data had a positive 

effect. 

Taking into account the tests results, we can conclude that methodology of searching for patterns 

is more efficient for performing a facial recognition than a statistical approach. From the 

experiments conducted during the tests, it was evident that the Local Binary Pattern excelled 

Eigenface and Fisherface algorithms, regardless of multiple conditions. The results suggest that 

LBPH is the most excellent model for face recognition using EmguCV library. This model 

achieves 50% accuracy in the dynamically changing environment. We can improve the results by 

using a more complex classifier, and this may be the right way for EmguCV to boost the efficiency 

in future releases of the library. 

A recognition model with an accuracy of 50% on a dataset of 100 could be helpful in applications 

if the interface provides multiple identity suggestions (at least 10). It will be very slow and 

challenge for a human to learn new identities of 100 individuals from photos to the point where 

they can achieve high recognition accuracy. However, the results demonstrate that there is still a 

lot of room for improvement in face recognition techniques. 

Further Extensions 

Unfortunately, we cannot use EmguCV library to develop facial biometric authentication systems. 

The primary obstacle is that none of the algorithms can differentiate the real face of a person from 

the picture.  
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But we can use them in CRM application to give a better user experience to customers or in 

attendance checking systems with not a significant amount of dataset and relatively stable lighting 

conditions. 
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