On intersection probabilities of four lines inside a planar convex domain

Abstract

Let $\mathrm{n} \geq 2$ random lines intersect a planar convex domain D. Consider the probabilities pnk, $\mathrm{k}=0,1, \ldots, \mathrm{n}(\mathrm{n}-1) / 2$ that the lines produce exactly k intersection points inside D . The objective is finding pnk through geometric invariants of D. Using Ambartzumian's combinatorial algorithm, the known results are instantly reestablished for $n=2,3$. When $n=4$, these probabilities are expressed by new invariants of D. When D is a disc of radius r, the simplest forms of all invariants are found. The exact values of p 3 k and p 4 k are established.

