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Preface

These are the proceedings of the sixteenth working conference of the International Federation of
Information Processing (IFIP) Working Group 7.5 on Reliability and Optimization of Structural
Systems, which took place at the American University of Armenia, Yerevan, on June 24-27,
2012. This volume contains 32 papers presented at the conference.

The conference was supported by IFIP TC-7, IFIP’s technical committee on Modeling and
Optimization, the University of California at Berkeley, and the American University of Armenia
(AUA). This support is greatly acknowledged. AUA is a young university founded in 1991, in
affiliation with the University of California, through the efforts of three American-Armenian
academics, including the first co-editor of this volume. AUA provided excellent facilities in its
new Paramaz Avedisian Building and superb logistical support for this gathering.

The purpose of the Working Group 7.5 is to promote modern theories and methods of struc-
tural and system reliability and optimization; to stimulate research, development and application
of structural and system reliability and optimization theories; to further the dissemination and
exchange of information on reliability and optimization of structural systems; and to encourage
education in structural and system reliability and optimization theories.

The main themes of the conference were structural and system reliability methods, probabil-
istic models, engineering risk analysis and decision making, stochastic systems, reliability-based
optimal design, and applications in various civil engineering domains, including infrastructure
systems, wind turbines, bridges, natural hazards, and seismic analysis. The conference was
marked by lively discussions and noteworthy participation of several young researchers, who
presented valuable contributions to the field and brought new viewpoints to the discussion.

As of June 2012, the IFIP Working Group 7.5 has the membership listed below. Also listed
are members of the Scientific Committee and the local Organizing Committee. Many of the re-
searchers and practitioners listed below played active roles in the scientific program of the con-
ference.
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Reliability-based design optimization with uncertain cost

T. Haukaas & M. Mahsuli

University of British Columbia, Vancouver, Canada

ABSTRACT: This paper presents techniques for estimation of seismic losses, followed by a
discussion of how to define and minimize the associated seismic risk. The backdrop for the de-
velopments is a new computer program, called Rt, which runs reliability analyses in conjunction
with many probabilistic models. A library of probabilistic models for hazards, response, dam-
age, and loss is implemented in Rt. These models are employed in this paper for seismic loss es-
timation. Upon computing the all-important cost exceedance probability curve, risk measures
are defined and minimized. A numerical example is presented, in which 622 buildings are sub-
jected to multiple sources of seismic hazard. The cost of retrofit of the building stock is included
in the probability curve, which facilitates the computation of the optimum level of retrofit.

1 INTRODUCTION

The context for this paper is seismic loss estimation, and the ultimate objective is to minimize
the total cost associated with earthquakes. In the application considered here, the cost stems
from repair of buildings that are damaged by earthquakes. However, the definition of cost and
the proposed optimization approach are intended to have broader applicability. Given appropri-
ate models, the cost may include other direct and indirect contributions, such as cost associated
with business interruption during repair. In fact, the cost should be interpreted as a general
measure of negative utility. Furthermore, the developments related to optimization, i.e. minimi-
zation of risk, are related to a broad class of problems where the outcome of a scalar utility
measure is both uncertain and dependent on decision variables. From this viewpoint, relevant
applications are found as far afield as in the financial sector.

The fact that the cost of earthquakes is modeled as a random variable does not imply that a
simple standard distribution suffices to characterize its uncertainty. On the contrary, an array of
probabilistic models is required to evaluate the total cost. Even when employing analytical
methods to evaluate repair cost and other performance metrics, separate models are required for
hazard, structure, damage, and performance (Baker and Cornell 2008; Cornell and Krawinkler
2000). The present study places particular emphasis on modeling, for several reasons. One ob-
vious motive is that engineers continually strive to improve the models that form the basis for
design and retrofit decisions. Another reason is the aspiration to employ the power and versatili-
ty of reliability methods to compute cost probabilities (Haukaas 2008). Importantly, the reliabil-
ity-based approach provides the opportunity to develop new and powerful models with Bayesian
techniques.

The problem addressed in this paper has five ingredients: probabilistic models, reliability
methods, a cost exceedance probability curve (EP curve), risk measures, and optimization
methods. These ingredients are described in subsequent sections, but a few general observations
are first made: It is noted that probabilistic models are at the heart of the computations, and the



quality of the results depends on the quality of the modeling. The models serve to predict the
outcome of physical quantities related to hazard, response, damage, and cost, with due account
of uncertainties. In turn, reliability methods utilize the probabilistic models to compute the EP
curve, or points on that curve. The EP curve is essentially the probability distribution of the cost
associated with a building or a region. Provided the EP curve, the next question is how deci-
sions will affect it. To quantify this, it is useful to introduce scalar surrogate measures based on
the EP curve, called risk measures. Finally, optimization is carried out to reduce the value of
those risk measures. The following sections discuss these ingredients in greater detail, starting
with the computer program that is tailored to carry out this type of analysis.

2 COMPUTER PROGRAM

Software applications for structural reliability analysis have been developed since the early
1980°s. In fact, a variety of computer programs are presently available for structural reliability
computations (Pellissetti and Schuéller 2006). Although several of these programs are capable
of handling multiple limit-state functions and even complex finite element models, a new chal-
lenge is posed in this study: Reliability analysis with many advanced probabilistic models re-
quires a new type of computer program to orchestrate mulfi-model analysis. The new computer
program Rt has been developed for this purpose (Mahsuli and Haukaas 2012).

Rt is freely downloadable at www.inrisk.ube.ca, together with examples and tutorials to help
the user get started. The primary objective with Rt is to run reliability and optimization analysis
in which limit-state functions, objective functions, and constraint functions require the evalua-
tion of many probabilistic models. A typical example is seismic risk analysis, which warrants an
array of models for hazard, response, damage, and cost. The key novelties in Rt are in the mod-
ule that contains the models, parameters, and function. Conversely, the analysis methods in R,
such as FORM, SORM, and optimization algorithms, are similar to those found in most other
reliability and optimization software.

3 PROBABILISTIC MODELS

Rt contains a steadily growing collection of probabilistic models. The responses from a model
enter either as input to another model or as input to a function, and all responses are physical
measurable quantities. In other words, the models simulate physical phenomena, and no model
produces a probability as output, as is the case for fragility curves and other conditional proba-
bility models used elsewhere.

This paper presents the results of a comprehensive seismic risk analysis of the 622 buildings
on the campus of the University of British Columbia in Vancouver, Canada. The types of mod-
els that are employed to model this problem range from earthquake magnitude to building dam-
age and repair cost. The region is subjected to three sources of seismicity: Shallow crustal
earthquakes, deep subcrustal earthquakes, and megathrust subduction earthquakes. The first two
are modeled as area sources, while subduction earthquakes originate from a line source. In turn,
each building is associated with a separate model for displacement response, acceleration re-
sponse, damage, and repair cost. In short, a total of 4,389 instances of 14 model types are uti-
lized to model the problem in Rt. Furthermore, 8,097 response objects are employed to convey
responses from one model to another, and ultimately to the function that represents repair cost.
All uncertainty, except the uncertainty in earthquake occurrence times that is described by Pois-
son point processes, is described by a total of 281 random variables, which enter into the com-
putations in each model.

4 RELIABILITY METHODS

The objective of the probabilistic analysis in this paper is to determine the probability of ex-
ceedance at different cost thresholds. Two analysis options are available in Rt for this purpose.
Both are capable of multi-hazard analysis, which is required in the considered example due to



the presence of multiple earthquake sources. One of the analysis options is based on Monte Car-
lo sampling, and the other is based on FORM in conjunction with the load coincidence method
(Wen 1990). For the purpose of the subsequent discussions, the exceedance probabilities from
Monte Carlo sampling for a 50-year time period is shown by the solid line in Figure 1. It is not-
ed that the cost-exceedance probabilities diminish rapidly as the cost threshold increases. For
example, the probability of exceeding $100M is 0.0365, while the probability of exceeding $500
is 0.0071. These two results are associated with 1.62% and 3.74% coefficient of variation, re-
spectively, and are obtained by Monte Carlo sampling with 100,000 samples.
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Figure 1: Exceedance probability curve for the UBC campus obtained by scenario sampling.

5 MEASURES OF RISK

A long-standing tenet of decision-making under uncertainty is to base decisions on expected
cost, or more generally, on expected utility. This approach is the foundation for reliability-based
design optimization, where the expected cost of failure is defined as the product of the failure
probability and the failure cost. However, the computation of the entire EP curve in contempo-
rary earthquake engineering and other fields renders vastly more information available than the
mean cost. This fact, together with the possibility of incorporating risk averseness, as well as
possible applications in the insurance industry and the financial sector, motivates the explora-
tion of risk measures beyond expected cost. In fact, in spite of steadfast consensus in the engi-
neering community that decisions under uncertainty should be risk-based, specific definitions of
risk are often elusive. Beyond expected cost, a variety of definitions and interpretations of risk
emerge. A large body of literature is available, and it is apparent that convergence to an omnipo-
tent risk measure is either an oxymoron or far away (Aven 2012; Bernstein 1998). This implies
that the basis for risk-based decisions, i.e. the definition of risk, must be carefully examined on a
case-by-case basis.

Coherency requirements for risk measures have received significant attention in recent years
(Artzner et al. 1999; Rockafellar and Royset 2010; Rockafellar 2007). These requirements con-
stitute a useful mathematical framework, but it is also necessary to examine each potential risk
measure from another perspective: How does it reflect the preferences of the decision maker?
For example, some decision makers may be concerned primarily with the mean annual cost,
while others may be concerned with the costs in the far tail of the EP curve. Furthermore, a risk
measure that encompasses the entire EP curve and facilitates minimization of the cost probabil-
ity at all cost levels may be of interest, regardless of its satisfaction of the mathematical coher-
ency requirements. Another example of the complexity involved in selecting a risk measure is
that minimization of tail cost can actually increase the mean cost (Haukaas 2008).



In the following, scalar risk measures extracted from the EP curve are denoted by r. The ran-
dom variable that represents the cost is denoted C, and its realizations are denoted ¢. The proba-
bility density function is denoted flc), the cumulative distribution function is denoted F(c), and
the EP curve, which essentially is the complementary cumulative distribution function, is denot-
ed G(c). From elementary statistics it is understood that the probability density function and the
EP curve have the relationship

JC(C):‘@2 =3 G(C):Tf(c)dc (e8]
dc

The inverse cumulatwe distribution funct]on is denoted F”'(p), and similarly the inverse EP
curve is denoted G'(p). As a result, G"\(p) is the cost that has probab1lltyp of being exceeded.
Following this notation, several risk measures are expressed below in terms of the EP curve.
Perhaps the most basic risk measure is the mean seismic cost:

_jc.ﬁ;ﬁdc )
dc

n=Hc=

and the standard deviation:

—6,.= _j z dGE‘c) )

In terms of measures that address the tail of the EP curve, two basic risk measures are defined
as (Haukaas 2008)

r(p)=G"'(p) 4)
and
r,(c)=G(c) (5)

A reduction in r; implies a reduction in the cost that has probability p of being exceeded,
while a reduction in r4 implies a reduction in the probability of exceeding the cost c. Another
risk measure 18
dG(c

©) e (6)
dc

r(m)=-[c:
T
which is the expectation of the costs that lie above the threshold 7.

The tail-measures presented so far require the selection of the value of p, ¢, or 7. Furthermore,
because the measures r4, #4, and s are defined in the tail, it can be argued that none of them em-
ploy all the information contained in the EP curve. An alternative that remedies this problem,
while also circumventing the selection of an ad hoc parameter value, is the second moment of
the cost:

=E[C*]=0l+ = j 2 4018, )

oy

A reduction in rs implies that the tail of the EP curve is “pulled” downwards. This is an appeal-
ing property because it implies that the highest costs are penalized the most. In fact, the higher
the order of the moment, the more the costs in the tail are penalized. Thus, r¢ and perhaps higher
moments appear to be an appealing class of risk measures in the context of minimizing overall
costs due to earthquakes.

6 OPTIMIZATION

So far, the discussion in this paper has focused on the computation of the EP curve, and the ex-
traction of risk measures from it. However, the ultimate objective is to make decisions that min-



imize the seismic risk. To facilitate such optimization, this study introduces a decision variable
that influences the cost. This is one reason why the word cost is preferred in this paper instead
of the narrower meaning of the word loss. Importantly, the cost of changing the value of the de-
cision variable is included in the total cost. To this end, reconsider the portfolio of buildings that
was described earlier. To estimate the optimal amount of retrofit needed for this portfolio, the
building strength parameter, 4, is introduced. To understand its definition it is necessary to ex-
amine the building response model and the construction cost model that are employed in the
analysis example. The displacement response of each building, measured as peak drift ratio, d,,

is modeled by
In(8,)=6,+6,In(8 )+6,1n(5,)—6, In((1+d)-¥) ®
-0, In(x)+8, In(Sa)+6,Sa+¢

where d,=vyield drift ratio, J,=ultimate drift ratio, F=lateral strength-to-weight ratio,
w=degradation factor, Sa=5%-damped spectral acceleration at the building period computed at
the building location, and £ is the model error. It is observed that ¢ is a dimensionless measure
that affects the lateral seismic strength of the building. Practically, an increase in d is achieved
by adding shear walls to a structure, or similar retrofit measures. Because o enters in the multi-
plication factor (1+d) it is clear that =0 implies no retrofit while &0 implies a strengthening.
The latter results in a reduction in J, and thus a reduction in ensuing damage and repair costs. It
is also noted that an increase in strength is usually accompanied by an increase in stiffness.
However, under the assumption that strength and stiffness increase proportionally, the parame-
ters &, and &, remain unchanged, because they depend solely on the strength-to-stiffness ratio.

The decision variable also enters the model that predicts incremental construction cost asso-
ciated with retrofit, which reads

co—d-(y-Cs-A)-[T}-eo 9)

where yp=ratio of the cost of the lateral force resisting system to the total structural cost,
Cs=structural cost per unit floor area, A=total floor area, a=code-level factor that expresses the
strength of the building prior to retrofit, and £,=model error factor. & is defined so that a=1 for
buildings that are built prior to seismic standards, =2 for low-code, =3 for moderate code, and
o=4 for building built to high seismic standards. The fraction in Eq. (9) is included because it is
assumed that buildings built to high standards cost 25% less to retrofit than the moderate code
level, while pre-code buildings cost 50% more to retrofit than the moderate code level.
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Figure 2: EP curves for three different values of .



The ultimate objective in the numerical example is to determine the optimum value of 4, i.e.
the optimum amount of retrofit. First, the risk measure r4(c) with ¢=$200M is considered. The
use of r4($200M) implies that the decision maker is concerned about the probability that the cost
exceeds $200M, including money spent on retrofit. To expose the nature of this problem, a
graphical approach is explored. As a starting point, reconsider Figure 1, which shows the EP
curve for the portfolio of 622 buildings for d=0, i.e. no retrofit. In order to study the tail proba-
bilities, the EP curve is reproduced in a logarithmic scale in Figure 2. The solid line in Figure 2
is the same as the solid line in Figure 1. Careful inspection reveals that ry($200M)=0.0207 for
d=0.

Next, several new analyses are carried out with values of d varying from no retrofit (¢=0) to
comprehensive retrofit (¢=1). The significant difference in the EP curve for these two alterna-
tives is exposed in Figure 2, where they are plotted as solid and dotted lines, respectively. Next,
consider Figure 3, which shows the “EP surface” that is obtained by continuously varying d
from 0 to 1. It is observed that the dotted line in Figure 2, which tracks the value of r4($200M),
exhibits the bath-tub variation that is characteristic for most objective functions. This means that
the cost exceedance probability first tends to decrease when d is increased from 0. At around
a=0.3, however, the construction cost outweighs the gain from reduced damage and the trend is
reversed. In other words, d=0.3 for ry($200M). The EP curve for d=0.3 is shown as a dashed
line in Figure 2, which confirms that this optimum, shown as a solid dot, is indeed associated
with smaller probability than both ¢=0 and d=1. To be precise, the thin straight lines in Figure 2
reveal that the value of r4($200M) at the optimum is 0.0189.
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Figure 3: EP surface.

The discussion in the previous paragraph is predicated on the threshold ¢=$200M in rs(c).
This value of ¢ is arbitrarily chosen. It is therefore of interest to broaden the discussion to other
cost thresholds in 74(c). To this end, it is first observed from the curvature of the surface in Fig-




ure 3 that & appears to be relatively low for low values of ¢, while d appears to increase when ¢
increases. This is confirmed by the solid line in Figure 3, which traces d for different values of
the cost threshold ¢. It is understood from above that the intersection between the solid and
dashed lines in Figure 3 identifies the optimum associated with r4($200M), namely d=0.3.
Closer inspection of the solid line in Figure 3 reveals that the optimum is ¢ =0 up to c=§106M,
and that d increases almost linearly with ¢ thereafter. In other words, a decision maker who is
concerned with high cost thresholds should spend more resources on retrofit according to the
risk measure r4(c).

Another risk measure that can be evaluated by direct inspection of the EP curve is ri(p),
which is essentially the inverse of r4(c) with respect to the EP curve. In the same way as it was
necessary to select the value of ¢ to evaluate r,, it is necessary to select the probability level p to
evaluate 5. A natural choice of p is 2% in 50 years, because this is the probability level, or “risk
tolerance level,” specified by the National Building Code of Canada for the seismic hazard (IRC
2010). Coincidentally, the risk measure 3(0.02-in-50-years) is easily evaluated here because the
presented EP curves show probabilities for a 50-year time period. In fact, the contour lines of
the EP surface in Figure 3, visible as borderlines between the different shades of gray, trace d
for fixed probability values, again exhibiting the characteristic bath-tub variation. Such plots
have revealed that the optimum level of retrofit increases from ¢=0 once small probability val-
ues are considered. As an example, d =0.12 when the cost is minimized at the probability level
2%-in-50-years. The corresponding minimum cost is $162M, i.e. r3(0.02-in-50-years)=$162M.
This suggests that the buildings should be strengthened by almost 12% according to a cost-
benefit analysis at the risk tolerance level set forth by the code. However, it is stressed that the
selection of this risk tolerance level must be scrutinized before making final recommendations.
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Figure 4: Variation of rg with d.

While the risk measures r; and #, can be evaluated by inspection of the EP curves, attention is
now turned to expectation-based risk measures, which require the evaluation of an integral. In
particular, it was mentioned earlier that the mean square, 4, appears to have appealing propet-
ties. Figure 4 shows the variation of ¢ with d, evaluated with the same 100,000 samples as pre-
viously used. Again, the bath-tub variation of the risk measure as 4 is varied is observed. Exam-
ination of Figure 4 reveals that @'=0.08 for rs. This result has the advantage that it is invariant to
the subjective selection of values for ¢ and p in ry and rs. However, it may be argued that, statis-
tical moments of higher order than s, i.¢. higher penalization of high costs, merit consideration.
Although such results are omitted here, preliminary studies suggest that the consideration of
higher statistical moments yields higher values of d". In short, the optimum design depends
quite strongly on the selection of risk measure, in addition to the quality of the probabilistic
models that form the basis for all the presented results.



7 CONCLUSIONS

The premise for the developments in this paper is a comprehensive seismic risk analysis of a re-
gion that comprises 622 buildings. A new computer program, Rt, is tailored to carry out this
type of analysis, which entails a large number of probabilistic models. This particular analysis
included 14 model types, 4,389 model instances, 8,097 model responses, and 281 random varia-
bles. In the context of classical structural reliability software, Rt is unique in several aspects.
Most importantly, Rt is a growing library of probabilistic models. The object-oriented parame-
terization of random variables, decision variables, and response in Rt is also unique, and facili-
tates the interaction between models at run-time. It is also noted that Rt computes model re-
sponse sensitivities both by the direct differentiation method and the finite difference method. In
fact, the response objects have a “smart™ feature, which means that finite difference analysis re-
quires re-run only of models that are affected by the parameter that is perturbed. Rt also has an
interactive graphical user interface, which allows modification of analysis parameters at run-
time. All these features were utilized in the analyses in this paper, where cost exceedance prob-
ability curves were produced. Based on these results, risk measures were extracted and subject-
ed to minimization. In doing so, less focus was placed on coherency of the risk measures and
more focus was placed on how a risk measure reflects the decision-maker’s preference. It was
observed that several risk measures are available, and it was demonstrated that those risk
measures exhibit behavior that make them suitable as basis for minimization of the uncertain
cost of earthquakes.
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ABSTRACT: An important issue in construction, repair, maintenance and testing is the ability
to select an optimal window of opportunity within a short-term period of time. This optimal
window is typically governed by external variables, such as weather, or affected by operational
conditions. A decision maker faces therefore sequential decisions to “start”, or to wait for “bet-
ter” conditions. We examine how this problem is best formulated, which optimization criteria
make sense from an engineering point of view, which kind of “stopping” rules can be used, and
which stochastic solutions or solution methods are known and/or available. We also discuss
how discounting affects the decision making and its outcome, as in many practical situations
“waiting” comes with an expensive price tag. The effect on the outcome of the selection process
of assuming a simple dependence structure between the opportunities is also assessed. To illus-
trate the various formulations of this problem, we contrast different criteria and decision rules,
assuming different scenarios.

| INTRODUCTION

Consider an engineering decision maker (DM) facing a finite sequence of opportunities and

needs to decide, at each step in this sequence, whether to continue and wait for a better oppor-

tunity, or else to stop in the hope that this particular opportunity is the “best”. This setting has
six fundamental aspects:

(1) the decisions are made sequentially

(2) the decisions at each step are binary: to turn down the opportunity, or to commit to it

(3) the decisions are made online in real time

(4) the decisions are irrevocable

(5) the opportunities have a finite horizon

(6) opportunities can be assessed fairly and ranked in a unique way
Examples include:

— waiting for favourable environmental conditions or for a suitable sea state window to per-
form a short-term operation; this situation is fairly typical in offshore, arctic, or harsh envi-
ronments.

— scheduling testing, repair, and inspection activities that depend on favourable combinations
of accessibility and down-time.

— contracting, hiring, and other sequential selection problems.

— selling large assets, with “offers” being the opportunities.

Notwithstanding the above commonalities, the problem can be formulated in many ways de-
pending on:

— the criterion for optimality and the type of “valuation” of the opportunity

— the type of decision rule used

— the probabilistic structure of the sequence of opportunities



Accordingly, different selection schemes are to be expected depending on the problem formu-
lation. The objective of this paper is to review the results and the techniques, and the optimal

decision strategies for given model assumptions.

2 OBJECTIVES AND STRATEGIES

Assume a finite set of » opportunities that can be ranked in a unique way from best to poorest. A

DM inspects each opportunity sequentially without “replacement”. Ranking presumes that it is

possible to value each opportunity. This valuation depends on the objective of the sequential

search which could be one of the following:

— Objective a -- searching for the (single) best opportunity; this requires us to assign a payoff
of +1 for the best opportunity and 0 for all others. The objective is to maximize the expected
return associated with the selection strategy, which is equivalent to selecting the top oppor-
tunity with the highest probability.

— Objective £ -- to minimize the rank of the selected opportunity with 1 being the best, 2 the
second-best, and so on.

— Objective y -- to maximize the “value” of the selected opportunity. Objective & being rather
strict, it is reasonable to consider that one would rather select a higher-valued than a lower-
valued opportunity. There may after all be some benefit to an opportunity that is not neces-
sarily the very best. This scheme assigns a scale of values x, x, ..., x, to each opportunity
with (only) one permutation being the (unique) best-to-poorest ranking. The goal is then to
maximize the expected value E(X,) where X, is the one opportunity chosen online, and where
the expectation is over all random orders as well as any random aspects of the selection algo-
rithm,

To tackle such problems, we can use a variety of decision rules (DR), such as:

— DRI -- Aspiration Strategy. In a first “exploratory” phase, opportunities are observed. Sub-
sequently, the first opportunity that outranks all previous ones up to that point in time is se-
lected. The length g of the exploratory phase needs to be optimized.

— DR2 -- g-th Exceedance Strategy. Select the g-th opportunity that exceeds all previous ones.

— DR3 -- Lousy Run Strategy. Select the first opportunity that outranks all previous ones after
having observed ¢ non-qualifying opportunities.

— DR4 -- Variable Acceptance Thresholds. Identify optimal value thresholds for each of the n
“steps” in the selection process above which an opportunity is to be accepted, below which
the search continuous. This DR requires some prior information about the possible value
structure.

— DRS5 — Constant Thresholds. Select the first or ¢-th opportunity that exceeds a predetermined
threshold. Unlike DR4 this implies that there is a nonzero probability that no opportunity is
actually selected.

3 OPPORTUNITIES WITH UNCERTAIN VALUE STRUCTURE

If, a priori, nothing is known about the structure of the search sequence, or about the “values” to
be expected (other than there being exactly » opportunitics), then a reasonable objective is to
aim at selecting the (very) best opportunity in the sequence (Objective « in Section 2). This
problem was originally considered by Johannes Kepler and is known as the secretary problem
(Ferguson 1989). A large number of scientific publications exist in statistical literature of this
emblematic problem where the goal is to hire the best secretary, by making an offer immediate-
ly after interviewing a candidate. The optimal strategy as shown by Ferguson (1989) is the “as-
piration” strategy DRI. It consists in first observing exactly ¢ opportunities in what we can treat
as an exploration phase, and after that, to select the first opportunity that exceeds the aspiration
level set during the exploration.

For large », the optimal learning length ¢/n approaches 1/e = 0.368 of the total number of op-
portunities. The probability of actually selecting the (very) best opportunity is a meagre /e =
36.8 % but no strategy can do better than this.



If however, the objective is, instead, to minimize the expected rank of the opportunity (Ob-
jective # in Section 2), then it can be shown (Chow et al., 1991) that the best expected rank one
can achieve given a best strategy of the type DR1 is 3.86.

In both cases, it is important to realize that nothing is known about the opportunities X and
that the only thing we can do is rank them, i.e. we can compare them vis-a-vis each other. The
secretary type of strategy DRI requires quite a long learning phase; 36.8% of opportunities must
essentially be wasted. One might suspect this is caused by the fact that there is no cost for wait-
ing but this is not the case (Mahdian et al., 2008). It is simply due to the fact that we consider no
prior information about the opportunities, resulting in the equivalent of a worst-case distribu-
tion.

Another way of appreciating the DR1 aspiration strategy, is to note that Ferguson (1989)
shows that the basic “secretary” formulation is in fact equivalent with the following game: let
the “opponent” first select a cumulative probability distribution (cdf) F(x) from which the op-
portunities .X; will be “drawn” independently. Any kind of F(x) will do. The objective is to max-
imize the probability that the opportunity selected has the maximum value, or, equivalently, to
maximize the expected value of the ratio of this value and the maximum value observed during
the initial exploration phase.

Now assume that the opportunities have values JX; which form an random sample with an un-
known pdf / and a cdf F. but make the “engineering” assumption that the hazard function
Jx)/(1-F(x)) does not decrease with x, 1.e. that the tail is at most exponential or light/bounded. In
other words, given that an opportunity exceeds x, the likelihood that it is equal to x increases as
x increases. This information alone considerable shortens the exploration phase of the aspiration
optimal procedure used to select the best opportunity (Mahdian et al., 2008). Its duration is now
only #/ln n which is considerably less than the »n/e in the case of the “secretary” problem. Solu-
tions corresponding to other objectives such as rank minimization are not available for this as-

sumed problem set.

4 INDEPENDENT OPPORTUNITIES WITH KNOWN VALUE CDF

Prior knowledge of the distribution F(x) and the pdf f{x) of a random iid sequence of the oppor-
tunities X; (/ = 1, ..., n) opens the door for an even more optimal selection procedure. Not sur-
prisingly, the wait and pick procedure DR1 of the above two scenarios may no longer be opti-
mal (Chow et al., 1991), but this depends on the assumed F(x).

Consider instead the selection strategy shown in Figure 1. It is based on a type DR4 decision
rule. Assume an acceptance threshold ¢; is set at each time step #; (i = 1, ..., #). The decision rule
is as follows: opportunity / is accepted at time # only if its value X; exceeds ¢; — else, the DM
waits for the next opportunity in the sequence (see Figure 1).

In order to set up an optimal strategy, we assume that our objective is to achieve the greatest
possible return in terms of the expected value of the selected opportunity. This is the y-type ob-
jective discussed in Section 2.

We can achieve this using backward induction as follows. Clearly ¢, must be zero since, or if
we do reach ¢ = ¢,, then any offer is better than nothing. Under the optimal strategy s defined in
terms of a set of optimal acceptance levels {ci, ¢, ..., ¢,} the expected return v; of the selected X,
if the selection process reaches # can be related to the expected return at time ¢, as follows:

vy = EQGIX; > )P (X > ¢) + v P(X; < ) =
]
= fc,- x [()dx + v fac'f(x)dx (i=1,..,n-1)
where as shown in Figure 1 the first and the second term represent the expected values when

opportunity i is accepted and declined, respectively. Thus the optimal acceptance level ¢; at each
time £ is the one which maximizes each v; and is based on:

% =0 or —¢; fe)+ vigf(c) =0 (i=1,...n—1) (2)
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Figure 1: Sequential decision strategy DR4

from which we find the recursive relation:
€ = Vg1 (3)

For i = n, when the very last opportunity gets to be selected, the expected return 17, is simply the
expected value E(X) because the threshold ¢, = 0. Therefore the optimal levels ¢, can all be de-
termined using Equation 3 starting from ¢, and going backwards toward ¢,. The expected return
at time # is of course a decreasing function of time which can be seen by plugging Equation 3
into Equation 1:

oe]
v = va x fQ)dx + v 1 F(v4) =
N . (4)
=Vt fviﬂ (1-F@))dx =c; + fci (1 - F(x))dx
Therefore, the consecutive optimal acceptance levels ¢; also form a decreasing sequence. When
increasing the number of opportunities », only the front end values and acceptance thresholds
will change, since they depend recursively on future values.
As an example, consider the values of the opportunities to be exponentially distributed with
mean X, , then the optimal selection strategy s consists of # acceptance levels and expected re-

turns as shown in Table 1 where for instance ¢, , = x, + f: exp (— J—:—) dx = xp, (1 +
m m
e 1) =1.368 x,,.
For given #, the “overall” expected return E(Xyls) associated with strategy s is simply equal
to its value vy at the very start of the sequence. Table 1 shows this expected payoff as a function

of the number of opportunities #.
We can also compare the expected return with the expected largest value in a random sample

of n opportunities:
E{ #isien ) = f;o nx F(x)" ! f(x)dx (5)

This would be the average value of the best possible opportunity if the entire sequence of » op-
portunities were to be fully exposed. Ideally this would be the opportunity we wish to pick. The




efficiency effis) of the selection process s would therefore be measured in terms of how close
E(Xy) can approach E(X ., n):
_ E(xy|s={cq.tnd)
eff(s) = T P—— (6)
For instance, in the case of the exponential distribution the expected largest return Equation 5 is
equal to Z?ﬂ% which approaches Inn + 0.5772 as n increases (Gumbel, 1958, p. 117) The cor-
responding efficiencies are shown in the fourth column of Table 1 for various horizons n.
However, another example is a uniformly distributed random sample. In that case, the DR4
strategy is in fact inferior to a secretary-type DRI approach. The optimal length of the experi-

mental phase is now either [\fﬁ] or [\/ﬂ which is much smaller than the »n/e learning phase re-
quired for the a-distributional selection process.

Table 1. Optimal DR4 acceptance thresholds for exponentially distributed opportunities with mean x,,.

Horizon First acceptance Overall expected Efficiency eff(s) of strat-
threshold ¢, return v, egy 5 (6)

n=5 1.820 x,, 1.982 x,, 86.8 %

n=20 3.083 x,, 3.129 %, 87.0 %

n=50 3.956 x,, LT o 88.4 %

n=100 4.631 x,, 4.641 x,, 89.5 %

n =500 0.22 1% 6229 % 91.6 %

5 ACCOUNTING FOR THE COST OF WAITING

It is common knowledge in behavioural operations research and experimental economics that
people in general tend to stop searching too soon. This may be explained in part by impatience,
by distrust of a rule that tells them to wait longer, or by the cost inherent in waiting and evaluat-
ing opportunities.

In engineering, “waiting” does usually involve a cost run-up. Crews or equipment on standby
can cost lots of money. Evaluating opportunities is also expensive. Therefore one reasonable ex-
tension of the decision rules discussed above is to account for the cost associated with waiting,
or, equivalently the decrease of the intrinsic value as time goes on.

A discounted version of the non-distributional DR 1-type strategies was studied, without sig-
nificant success, by a series of authors (Babaioff et al., 2009). The problem is hard as it is quite
sensitive to the assumed discounting model and to any assumptions about the value structure.

However, the “variable acceptance thresholds™ approach DR4 is amenable to discounting,
and it often — but not always — turns out to be an optimal strategy. The latter actually depends on
the distribution of opportunity values F(x) and on the severity of the discounting function. For
instance, consider a decreasing discounting function (t) with n(t;) = 1 such that the effective
value of an opportunity at time t; becomes:

X =Xin(t) 7
If now n(t) decreases very rapidly, then it is clear that the trivial strategy that always picks the
first opportunity X,, = X; will outperform all other strategies since it has an (undiscounted) ex-
pected return equal to x,,7(t;). Thus the DR4 decision algorithm may not be optimal if the cost
of waiting is too expensive, and its applicability should always be verified.
The various acceptance thresholds using DR4 can now be found from the following recursive
relationship replacing Equation 1:

vl =n(t) f::x fodx + F(c)vi,, (@(=1..,n—1) (8)
Differentiation results in the optimal threshold ¢; at time ¢;:
o s BT
G n(t:) )
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Note that at the very last time step t,, the threshold ¢,, must be zero like before and the expected
return is equal to E(X) n(t,) = x,n(t,).
Since, based on (9) the (n-1)" threshold c,,_; is equal to this pay off divided by n(t,_,), it

follows that ¢, ; = xm[n?ft“))] compared to x,,, in the no-cost-for-waiting case, such that this
n-1.

and all other thresholds are smaller than in the undiscounted case. This means that we will be
inclined sooner to select and stop at a given opportunity that satisfies the criterion.
The recursive expected return at time ¢; given previously by Equation 4 now becomes:
v = vy () fie (1 - F(x)) dx i=1.,n=1) (10)

i+1
nlt;)

6 CONDITIONALLY DEPENDENT OPPORTUNITIES

In some cases the assumption that the opportunities are iid may not be realistic. To simplify a
situation having sequential dependence, let us assume that for each i the distribution of X; de-
pends on the previous observation x;.,. We write Fi(x|x,;) and f{x|x.,) to reflect this.

Under the same formulation and assumptions as those given in Section 5, the expected return
v; in Equation 1 is now replaced by:

v = EQGIX > )P > ¢) + v P(X; < ) =

= [y *filelxig) dx + v [ filxltio) dx (@=1,.0,m—1) (1)
Thus the optimal acceptance level ¢; at each time ¢ is found from:
—cifieilxioq) + viga fileilxq) = 0, (i=1.,n-1) (12)

from which we find the same recursive relation as in Equation 3.

Therefore the optimal levels ¢; can all be determined using Equation 3 starting from ¢, and
going backwards toward ¢,. However, it is imperative to realize that these levels now depend on
the sequence of observed values {x,, ..., x,.;}. The expected return at time #, is now:

v = f,:ﬂ xfe(xlxio1) dx + vip 1 Fi(Uipq %) =
=vies + [, (U= Flalxig))dx = 6 + (1 - Fyxlx_y)) dx (13)

To get an idea about the behaviour of the sequence of optimal levels (Equation 3) and returns
(Equation 13), a simulation study would be required.

7 EXAMPLE

Subsea manifold installation for a 2,000 m deep water oil and gas field development involves a
large number of specialized tasks most of which are performed remotely by ROVs. In many de-
signs, manifolds are now spatially dispersed into a set of 20-50 Flowline Termination Assem.-
blies (FTAs) which are small self-contained units of about 15 ... 20 tonnes that house valving
and flowline connections.

The present example focuses on ROV operations for various clamping and connection tasks
performed on FTAs. They typically last between 16 and 24 hours without lead and lag times
which add about 50 % to the duration of a task. The key variable affecting the efficiency of such
operations is the mean near bottom current speed. In general, the larger the mean current speed
the lower, the more difficult, and the less effective the ROV operations. A pretty well standard
quadratic relation between total cost (direct + indirect costs due to slowdown, repeats, delays)
and 3-day current speed is assumed to apply. At the site considered energetic bursts and quiet
regimes persist typically for about 3 days. This is due to the preponderance of topographic deep
waves at the edge of loop oceanic currents. One of the FTAs is equipped with a current meter
package that transmits deep current data on demand every few days. On this basis the DMs
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make an online decision to launch, load and operate the ROV, or they decide to wait for a better
opportunity that would occur in the planned window of duration 7.

Consider T = 1 month which contains » = 10 “opportunities” of 3 day-slots. The cost of wait-
ing is considered to be negligible as personnel and equipment can be mobilized for other paral-
lel tasks. The 3d-current U at the deepwater site has a mean of 0.20 m/s and is assumed to per-
sist during each 3 day-slot. Its cdf is a Weibull distribution:

b
Fy(w) =1 —exp(— (H) ) u>0 (14)

with exponent b = 2 and scale a = 0.226m/s.

The operating conditions are as follows: ideal operation conditions occur at mean currents
less than 0.05 m/s but they are still acceptable up to 0.10 m/s which is often used as a criterion
above which routine non-emerging deployment is avoided. Conditions between 0.10 m/s and
0.25 m/s are termed “difficult” whereas they become virtually impossible during high energy
bursts. The value of each “opportunity” X is taken as the negative of the generic cost which, as
discussed above is proportional to the square of current speed. Since this amounts to a one-to-
one transformation of U/ — X', we can express all the results in terms of U/ with, of course, low-
er values being more preferable.

We contrast the seven strategies listed in Table 2. In scenario (S4), the cost of waiting is as-
sumed to increase linearly in time such that if the final opportunity were to be reached and se-
lected, the total cost would be double of that when no penalty is assigned to inactivity.

The expected minimum cost for » = 10 iid opportunities, based on Equation 5 corresponds to
a current speed of 0.0632 m/s. This is used as the denominator in Equation 6 to evaluate the ef-
ficiencies of each strategy in terms of its expected pay off. Table 3 shows the value eff (s) for
each strategy. Strategy (S3) is the overall “winner” closely followed by the fixed threshold crite-
rion (S6) having » <0.10 m/s. Note that the fixed criteria are ineffective if the threshold is either
too low or too high as shown in Table 2 for (S5) and (S7), it needs to be “just right”. However,
while (S6) comes close to the optimal (S3) in terms of pay off, there is a nonzero probability
that no activity takes place if none of the » opportunities meets the fixed criterion. This contrasts
with the variable acceptance threshold strategy (S3) which is heavily influenced by the fact that
any choice, at the end of the selection process, would be better than none.

Table 3 also shows the probability that, based on each strategy, no single opportunity would
be “good enough”. Hence, no selection would be made and this would result in inactivity. Table
3 also includes the expected duration of the selection process. For processes with a nonzero
probability of non-termination, the duration is assumed to be » + 1 = 11 time steps. The cost of
waiting strategy (S4) shortens the waiting time but it increases the overall expected cost. The
higher the current threshold, the shorter the waiting process (S7) but the deep sea installation
process will likely be poor and comes at high cost and low efficiency. Table 4 summarizes and
contrasts the optimal decisions at each of the 10 decision points.

8§ CONCLUSIONS

Several formulations, valuations, and objectives can be considered for real-time sequential deci-
sion making problems involving irrevocable choices in a finite set of opportunities. Various de-
cision making strategies are reviewed including aspiration strategies for low-information condi-
tions and fixed/variable threshold acceptance strategies, for situations where the probabilistic
structure of opportunities is known.

In the latter case a recursive algorithm can, at least partially, be used to optimize thresholds
with or without discounting due to waiting. It is shown that in sequential online decision mak-
ing, irrevocable decisions tend to be made too early. In other words, it often pays to wait for a
better opportunity down the line. The variable threshold decision rule is valid for (1) independ-
ent sequences, (2) dependent sequences, and (3) the consideration of waiting cost. However, the
valuation recursive algorithm as well as the optimal thresholds are different for all three cases.
An example shows the superiority of the variable acceptance threshold approach in a specific
application, where it has the best overall expected valuation, a reasonable expected duration,
and a very low probability of making an unsatisfactory selection.
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The above models may need to be generalized before using them for specific engineering
problems. Ones such extensions would include portfolio selection, where instead of just one op-
portunity, a portfolio m<n of opportunities is to be selected with the objective of maximizing its
collective return.
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Table 2. Subsea FTA operations: opportunity selection strategies.
Selection Strategy
S1 The optimal (nen-informative) aspiration strategy (Section 3)
S2 The optimal aspiration strategy based on known regular tail behaviour (Section 4)
S3 The optimal (variable) acceptance threshold strategy (Section 5)
S4 The optimal (variable) acceptance threshold strategy including a cost for waiting/delaying (Section 6)
S5 The fixed threshold strategy allowing “ideal”, # < 0.05 mv/s
S6 The fixed threshold strategy allowing “ideal” or “acceptable”, u <0.10 m/s
§7 The fixed threshold strategy allowing “ideal”, “acceptable”, or “difficult”, » < 0.25 m/s

Table 3. Efficiency of the optimal strategy, probability of inactivity, and expected duration (Subsea FTA)

eff (s)as per (5) and (6) probability (%) expected duration
S1 0.60 30.8% 8.19 out of 10
S2 0.67 4.4% 5.00 out of 10
S3 0.78 0 4.83 out of 10
S4 0.52 0 3.58 out of 10
S5 0.47 61.2% 8.71 out of 10
S6 0.74 14.0% 4.96 out of 10
§7 0.43 0 1.41 out of 10

Table 4. Details of the optimal strategies for n=10 consecutive time steps (Subsea FTA operations).
Values denote current thresholds (m/sec) below which operations are to go ahead.
WO: wait and observe
SFM: select the first opportunity that has a current reading smaller than all previous ones.
Time step: 1 2 3 4 5 6 7 8 9 10
S1 wo WO WO WO SFM SFM SFM SFM SFM SFM
52 wOo WO SFM SFM SFM SFM SFM SFM SFM SFM
83 0.085 0.090 0.095 0.102 0.110 0.121 0.135 0.158 0.200 any
S4 0.121 0.122 0.123 0.127 0.132 0.140 0.152 0.172 0211 any
S5 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
S6 0.010 0.010 0.010 0.010 0.010 0010 0.010 0.010 0.010 0010
S7 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025
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Life-cycle cost based optimal design of fluid viscous dampers
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ABSTRACT: A simulation-based, probabilistic framework is discussed in this paper for design
of viscous dampers based on life-cycle cost criteria. This framework allows for explicit
consideration in the design process of all important nonlinearities for both the dampers and the
structural behavior, as well as of all sources of uncertainty related to the seismic hazard. It is
based on an assembly-based vulnerability approach for estimating earthquake losses, and on
description of the earthquake hazard through stochastic ground motion models, along with
predictive relationships that relate their parameters to regional seismicity characteristics. In this
setting, the life-cycle cost is quantified by its expected value over the space of the uncertain
parameters for the structural and excitation models, and is estimated through stochastic
simulation. For the design-optimization an algorithm appropriate for costly global optimization
problems is adopted. An illustrative example is presented that considers the optimal life-cycle
based design of fluid viscous dampers for retrofitting a three-story concrete structure.

1 INTRODUCTION

Probabilistic approaches for comprehensive cost-effective design of viscous dampers for
seismic hazard mitigation are gaining increasing attention within the structural engineering
community, especially in the context of retrofitting strategies (Taflanidis and Beck, 2009). A
realistic treatment of such a design requires proper integration of (i) methodologies for
addressing the uncertainties related to the seismic hazard over the entire life-cycle of the
building, (ii) tools for evaluating the performance using socioeconomic criteria, as well as (iii)
algorithms appropriate for stochastic analysis and optimization. This work uses a simulation-
based framework that addresses all important challenges associated with these steps for the
design of fluid viscous dampers for retrofitting of building structures. A probabilistic foundation
is used to address the various sources of uncertainty and quantify the expected life-cycle cost
which is comprised by the lifetime repair cost of the structure due to expected future seismic
losses and the upfront cost of the damper devices. An assembly based vulnerability approach is
used to estimate the repair cost. This approach uses the nonlinear time-history response of the
structure under a given excitation to estimate the damage in a detailed, component level. A
probabilistic excitation model is then presented for describing the ground motion time history
for future earthquake excitations. This is established by adopting a stochastic ground motion
model as well as predictive relationships that relate the properties of the excitation to
characteristics of the seismic hazard. In this setting, the life-cycle cost is quantified by its
expected value over the space of the uncertain parameters for the structural and excitation
models. Because of the complexity of these models, calculation of this expected value is
performed using stochastic simulation techniques. This approach, though, involves an
unavoidable estimation error and significant computational cost, features which make efficient
design optimization challenging. To alleviate this burden, an efficient algorithm belonging in the
greater family of Costly Global Optimization (CGO) search techniques is adopted here.
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2 QUANTIFICATION OF LIFE-CYCLE COST

For evaluation of seismic cost adoption of appropriate models is needed for the structural
system, the earthquake excitation and the loss evaluation (Figure 1).The combination of the first
two models provides the structural response and in the approach adopted here this is established
in terms of nonlinear time-history analysis. The loss evaluation model quantifies, then,
earthquake performance in economic terms based on that response. The characteristics, though,
of these models are not known with absolute certainty. Uncertainties may pertain, for example,
to (i) the properties of the structural system, to (ii) the variability of future seismic events
(moment magnitude or the epicentral distance), or to (iii) the predictive relationships about the
characteristics of the excitation given a specific seismic event. A probabilistic approach provides
a rational framework for quantifying these uncertainties through the entire life-cycle.

To formalize this idea, let ¢ =[@,,@,,...¢, ]€ ® c R™ denote the vector of controllable
parameters that define the system design, referred to herein as design variables, where @
denotes admissible design space. For the application discussed here, @ consists of the design
characteristics of the fluid viscous dampers. Let® e @ c R™, denote the augmented vector of
model parameters where @ represents the space of possible model parameter values. Vector 0 is
composed of all the model parameters for the individual structural system, excitation, and
performance evaluation models indicated in Figure 1. For addressing the uncertainty in 6 a
probability density function (PDF) p(0), is assigned to it, quantifying the relative likelihood of
different model parameter values. The favorability of the system response, given the values of
the model parameters, is evaluated by the risk consequence measure h(@,0):R" ™ —R",
7(9.0)=C.(0.0)+Ci(9,0), where C, (9,8):R™"™ — R' corresponds to the initial cost and
C(9,0): R”"™ —R"to the additional cost over the lifetime of the structure. The expected
life-cycle cost C(@) is then simply given by the expected value:

C(@)= [ 1@, 0)p®)d0 (1)
which leads to the following optimal design problem
@ =argmin C(p) (2)
ped

Note that in this formulation, all performance requirements against future natural hazards are
directly incorporated in the objective function. Also, all associated constraints, for example
related to spacing of dampers, are directly incorporated into the definition of admissible design
space @. For evaluation of the objective function in (1) and for the associated design
optimization problem (2), an approach based on stochastic simulation will be discussed later in
Section 6 that can seemingly integrate recent high-performance computing advances to provide
a powerful framework that allows adoption of complex sub-models for describing the overall
system in Figure 1. First these models are reviewed.

Stochastic ground ) ds abl
motion model Acceleration | ©CS1ET VANADIES §

with parameters 6, time history

[Loss estimation model With W

parameters 8, Response
time-history

Stochastic
Sequence Z Structural model with b F er
W i"h MWM\WWN arameters 8, and _ et D

Eartﬁquake losses | | Uncertaintyin retrofitting
| h(0) dependent on 8=(8,, q:_’ o_p Z} scheme
_model parameters Eizgigiaisbtliz;t:(ﬁ)} ‘ it story restoring force

Life-cycle seismic cost

Figure 1: Augmented system model for life-cycle cost estimation
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3 CHARACTERISTICS AND INITIAL COST OF DAMPERS

The force of (nonlinear) fluid dampers can be expressed in form Fr=Cpsgn(xp)[ip|” (Taflanidis,
2011), where Cp is the damper coefficient, x5 is the damper velocity and a is the velocity
exponent. For a structure equipped with » dampers (at different stories and/or locations), the
design variables for the optimization problem include the damper coefficients Cp; and the
velocity exponents «; for each of the dampers, i = 1,...,n. The cost of each damper is estimated
based on its corresponding maximum force capacity F,,,, defined as the maximum force the
damper is expected to develop under the maximum credible earthquake (Taylor Devices, 2012).
Therefore, for a given configuration of Cp; and ¢;, the maximum force capacity £,,; can be
calculated by selecting an appropriate reference velocity. Under the probabilistic description
established for the seismic hazard later, this reference velocity is easy to quantify; it simply
corresponds to the velocity with certain probability of exceedance. After the damper capacity
F,4 has been determined the evaluation of its cost is relatively straight-forward; it can be
performed using data for existing commercial devices (Taflanidis and Beck, 2009).

4 LOSS ESTIMATION METHODOLOGY

For estimating direct earthquake losses an assembly-based vulnerability approach is adopted.
According to this methodology, the components of the structure are grouped into #,, damageable
assemblies. Each assembly consists of components of the structural system that have common
characteristics with respect to their vulnerability and repair cost. Such assemblies may include,
for example, beams, columns, wall partitions, contents of the building, and so forth. For each
assembly j=l1,...,n,, ny; different damage states are designated and a fragility function is
established for each damage state d;;, k=1,...,ns;. These functions quantify the probability
P.[d;JEDP, @,0] that the component has reached or exceeded its kth damage state, conditional
on some engineering demand parameter (EDP,) which is related to the time-history response of
the structure under a given excitation (for example, peak transient drift, peak acceleration, etc.).
Damage state 0 is used to denote an undamaged condition. A repair cost Cy; is then assigned to
each damage state, which corresponds to the cost needed to repair the component back to the
undamaged condition. The expected losses in the event of the earthquake are:

L(g.8)=) " >\ Pld, | 9,0]C, (3)

where P[d;,|¢,0] is the probability that the assembly ;j will be in its #" damage state and the
explicit dependence on EDP; has been dropped (since knowledge of the design and model
parameter assumed to leads to estimation of EDP;). The probability P[d/¢,0] may be readily
obtained from the information from the fragility curves; it is equal to the probability of
exceeding state d; minus the probability that it has exceeded the subsequent state dj.y ;2

Pld, ;19,0]=Fld, ;|0,0]-Fld,.,,|9.8] Pld, ;|e.8]=F[d, | ¢.0] Q)

5 EXCITATION MODEL

This loss-estimation approach requires development of a probabilistic model of the entire
ground motion time history that will adequately describe the uncertainty in future earthquake
events. This model needs to describe moderate (in range of 5-6.5 moment magnitude) and strong
(in range of 6.5-8 moment magnitude) seismic events as both contribute to the overall damages
and repair cost over the life-cycle of a building (Taflanidis and Beck, 2009), the former creating
primarily damages in the non-structural compenents and the latter impacting additionally the
structural components. Moreover, for comprehensive characterization of the seismic hazard in
regions close to active faults, consideration of the probability of occwrrence of a forward-
directivity pulse is required, as such type of excitations, can cause severe damage in structural
systems. In this study this taken into account, through introduction of the probability for velocity
pulse existence for specified earthquake and site characteristics (Shahi and Baker, 2011).
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A stochastic ground motion model that can address pulse like excitations is briefly discussed
next: according to it, the high-frequency and long period components of the motion are
independently modeled and then combined to form the acceleration time history.

High Frequency Component. For modeling the higher-frequency (>0.1-0.2 Hz) component of
ground motions, a point source stochastic model is chosen here. This approach is based on a
parametric description of the ground motion’s radiation spectrum A(f; M,r), which is expressed
as a function of the frequency, £ for specific values of the earthquake magnitude, A4 and the
closest distance to the rupture surface r. This spectrum consists of many factors which account
for the spectral effects from the source (source spectrum) as well as propagation through the
earth’s crust up to the structural site. The temporal characteristics of the ground motion are
addressed through an envelope function e(z;M,r), which again depends on M and r. These
frequency and time domain functions, A(f;M,r) and e(#, M,»), completely describe the model, and
their characteristics are provided by predictive relationships that relate them directly to the
seismic hazard, i.e. to M and r. More details about them are provided in (Boore, 2003;
Taflanidis and Beck, 2009). In particular, the two-corner point-source model by Atkinson and
Silva (Atkinson and Silva, 2000) can be selected for the source spectrum because of its
equivalence to finite fault models. The time history (output) for a specific event magnitude, M,
and source distance, r, is obtained according to this model by modulating a white-noise
sequence Z = [Z(id0).i=1,2,...,N7], where At the chosen discretization interval, by e(z; M #) (in
the time domain) and subsequently by A(/;M,r) (in the frequency domain).

Long-period pulse: For describing the pulse characteristics of near-fault ground motions, the
simple analytical model developed by Mavroeidis and Papageorgiou (2003) is selected.
According to it, the pulse component of near-fault motions is described through the following
expression for the ground motion velocity pulse:

V()= A4,/ Al+cosaf, | 7,(t 1, )]cos| 22 f, (t-1,)+v, |
if telt,~7, /@)1, +7,/(2F,)] (5)
=0 otherwise

where 4, f,, Vs, ¥, and ¢, describe the signal amplitude, prevailing frequency, phase angle,
oscillatory character (i.e. number of half cycles), and time shift to specify the envelope’s peak,
respectively. These pulse characteristics can be estimated by predictive relationships that
connect them to the seismic hazard of a site. In this study the predictive equations proposed by
Dabaghi et al. (2011) are used. These empirical equations link the pulse parameters to the
following earthquake and site characteristics: the type of faulting (strike-slip or non strike-slip),
the moment magnitude, A, the shear wave velocity in the top 30m of soil at the site, V), the
epicentral distance R,,;, the closest distance to fault rupture, r, the length of rupture between the
fault and the site, s, and the angle between the strike of the fault and the line joining epicenter
and the site, 6. Figure 2 illustrates the source-to-site parameters r, R.,;, 0, s and the rupture
length L, for the case that the site is located before (left) and after (right) of the end of the
rupture length for a strike-slip fault. Note that due to geometric relationships only four of these
parameters are independent. The rupture length is estimated here by the predictive equation
proposed by Wells and Coppersmith (1994) log;o(L)=-3.55+0.74M+e;, where e, is a prediction
error following Gaussian distribution with zero mean and a specified standard deviation.
Additionally, since not all the near-fault ground motions exhibit this long period pulse, the
probability of occurrence of the velocity pulse is calculated using the predictive e%uat;(}n for
strike-slip faults proposed by (Shahi and Baker, 2011), P(pulse|r,s)=1/[1+¢"%201670075

Near-fault ground motion: The stochastic model for near-fault motions is finally estabhshed
by combining the above two components (Taflanidis, 2011) and ultimately provides a complete
probabilistic description for the seismic hazard based on the seismicity characteristics M, r, R,
and &, the various predictive relationships (for A(f M,r), e(t; M), L and the pulse characteristics)
and Z. Establishing probability models for A, r, R, and & (primary model parameters) and
addressing in a similar way the uncertainty in the predictive relationships (secondary model
parameters) and in the stochastic sequence Z, leads then to the desired probabilistic seismic
hazard characterization, that can be used for quantifying the life-cycle cost in Equation (1) as
well as for defining the reference velocity for estimating the cost of the dampers.
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Figure 2: Source to site geometry for strike-slip faults

6 LIFE-CYCLE COST OPTIMAL DESIGN

The system, excitation and performance evaluation models described earlier lead to
quantification of the loss function 4(g,8). The optimization in (2) requires, additionally, the
evaluation of the integral corresponding to the objective function. Since the nonlinear models
considered are complex and include a large number of uncertain model parameters an efficient
approach for this task is to use stochastic simulation (Taflanidis and Beck, 2008). Using a finite
number, N, of samples of @ drawn from some proposal density p;(8), an estimate for (1) is:

Cl@)=1/NY." h,0)p(8')/ p,(®) (6)

where 0’ denotes the sample of the uncertain parameters used in the i simulation. As N — @,
then C—C but even for finite, large enough N, (6) gives a good approximation for (1). The
importance sampling density p;(8) may be used to improve the efficiency of this estimation, by
focusing the computational effort on regions the @ space that contribute more to integrand of
(1). For problems with a large number of model parameters, such as the application discussed
here, choosing efficient importance sampling densities for all components of @ is challenging;
thus it is preferable to formulate importance sampling densities only for the important
components of 0, i.e. the ones that have biggest influence on the seismic risk, and use p;(.) =
p(.) for the rest (Taflanidis and Beck, 2008). For seismic risk applications the characteristics of
the hazard, especially the moment magnitude is generally expected to have the strongest impact
on the calculated risk (Taflanidis and Beck, 2009), so selection of importance sampling densities
may preliminary focus on it. Note that formulation (6) allows to seemingly integrate recent
advanced in high performance computing (parallel/distributed computing) to perform the
required N evaluation of the system performance independently in parallel mode. This
significantly reduces the computational barriers that have been traditionally associated with
stochastic simulation techniques, and along with adaptive techniques for formulation of
importance sampling densities (Taflanidis and Beck, 2009) can significantly improve efficiency.

Finally, optimization (2) may be performed using estimate (6). For this optimization problem,
an exterior sampling approximation (ESA) is adopted in this study (Taflanidis and Beck, 2008).
ESA adopts the same stream of (a sufficiently large number of) random numbers throughout all
iterations in the optimization process, thus transforming the optimization into a deterministic
system design problem, which can be solved by any appropriate deterministic optimization
algorithm. Still, the estimate of the objective function for this optimization involves significant
computational cost since N evaluations of the (nonlinear) model response are needed for each
analysis. This feature make the optimization problem challenging. An efficient search technique,
belonging in the greater family of costly global optimization, CGO, algorithms (Holmstrom, et
al., 2009), is adopted here, utilizing a response surface approximation for the objective function.
Based on a small number of evaluations of the objective function a response surface is built in
the design variable space, and used to adaptively select the candidate location of the global
minimum. Evaluation of the objective function at that point provides then additional information
for updating the response surface and convergence towards the final design solution.
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7 ILLUSTRATIVE EXAMPLE

For the illustrative example, a three-story reinforced concrete office building with nonlinear
fluid viscous dampers is considered. The dimension of the building is 32 x 36 m and the height
of each story is 4.0 m. The shear wave velocity in the top 30m of the soil at the site, Vi, is
assumed to be 310 m/sec, which corresponds to generic soil conditions, while the type of the
fault is assumed to be strike —slip. The design variables in this problem correspond to the
damper coefficients in each story Cp;, i = 1,2,3. The damper capacities F,.; are calculated by
assuming that the velocity exponents for each a; is equal to 0.5, and that the reference velocity
discussed in Section 3 is equal to the one that has 1% probability of exceedance.

7.1 Structural and excitation models

A planar frame model (illustrated in Figure 1 earlier) with peak oriented hysteretic behavior and
deteriorating stiffness and strength is assumed. The median value for the lumped masses of all
the stories are [m;] = [976, 932, 887] metric tons, i=1,2,3. All three masses are assumed
uncertain, following a log-normal distribution with coefficient of variation (c.0.v.) 10%. The
injtial inter-story stiffnesses ; of all the stories are parameterized by &, = kﬂk‘j , =1,2,3, where
[%,]= 789.02[1.00, 0.85, 0.70] MN/m are the most probable values and 6, are nondimensional
uncertain parameters, assumed to be correlated Gaussian variables with mean value one and
covariance matrix with variances 0.10 for all the floors and correlation coefficients 0.5 between
adjacent floors and 0.2 between first and third floor. For each story, the post-yield stiffness
coefficients a;, stiffness deterioration coefficient f3;, over-strength factor y,, ductility coefficient
4, and yield displacement d,; have median values 0.1, 0.2, 4 and 0.5% of story height,
respectively (see Figure 1 for proper definition of some of these parameters). All these
parameters are treated as independent log-normal variables with c.o.v. 10%. Additionally, a
residual strength is assumed equal to 10% of the maximum strength. The structure is assumed to
be modally damped. The damping ratios for all modes are treated as log-normal variables with
median values 5% and c.o.v. 30%.

Seismic events are assumed to occur following a Poisson distribution and so are independent
of previous occurrences. The uncertainty in moment magnitude M is modeled by the Gutenberg-
Richter relationship truncated on the interval [Mym, M| = [5.0, 8.0], leading to the PDF and
expected number of events per year given, respectively, by:

b,, exp(—b,, M)
exp(_b;w M) —exp(=b,M_ )

Only events with magnitude greater than M>5.0 are considered since earthquakes with smaller
magnitude are not expected to lead to significant damage to the structure. After each earthquake
the structure is assumed to be restored quickly to its original, undamaged, condition. The
regional scismicity factors are selected as $=0.91og.(10) and a=4.35log.(10), leading to v=0.25.
Following discussion of Section 6 importance sampling density was used only for Af; it was
used a truncated on the interval [M,,,, M,.] Gaussian PDF with mean value 6.8 and standard
deviation 1. For the uncertainty in the event location and orientation with respect to the fault, the
epicentral distance R.;, for the earthquake events is assumed to follow a log-normal distribution
with median 22 km and c.o.v. 0.4, whereas the angle between the strike of the fault and the line
joining epicenter and the site, ¢, is assumed to follow a Beta distribution with parameters
Upeta=1.73 and by, =4.07. The prediction error e, for the rupture length is treated as a Gaussian
variable with zero mean and standard deviation 0.23. Parameters » and s can be derived from the
source to site geometry as depicted in Figure 2.

v=exp(a—bM,

min

)—expla—bM_ ) (7)

pM)=

7.2 Expected life-cycle cost
The damper cost and it is estimated based on their maximum force capacity F;, as

C,-m-,z,=$(0.77(E,d‘,)"207+2806). This approximate cost equation has been derived by fitting to a
curve of some commercially-available dampers (Taylor Devices, 2012). The constant term in
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the above equation corresponds to installation cost of the dampers. The lifetime cost
corresponds to the present value of the losses from future seismic events which is calculated by
Cif(@,8)=L(,0)[vt)c(1-€"**)/r4tyr.], where ry is the discount rate (assumed here 2.5%), . is the
lifetime of the structure (taken here as 60 years) and L(¢,8) is the expected cost given the
occurrence of an earthquake event. For estimating this repair cost L(g,0) each fragility function
is a conditional cumulative log-normal distribution with median x,, and standard deviation b, as
described Table 1, which also presents the expected cost per element $/n,, where n,
corresponds to the number of elements that belong to each damageable assembly for each floor.
For structural components, partitions and paint the maximum interstory drift is used as the EDP,
while for the rest the maximum story absolute acceleration is used as the EDP. The fragility
curves used are similar to the ones selected in (Goulet et al, 2007) for all damageable
subassemblies except for the structural components. For the latter the fragility curves are chosen
with respect to the characteristics of the backbone curve for the restoring force in each story.

Table 1: Characteristics of fragility functions and expected repair cost for each story

dkj X f?,,, ot $/?’Id dk / Xy b,,, Ret $/H,_J]
Structural components FPartitions

1 (light) 1.26,; 020 42 2000 1 (small) 0.25% 0.70 640 m* 3.14

2(moder) (3,,+d,)2 035 42 9625 2(extens)  0.60% 050 640m>  48.44

3 (signif.) Oy 040 42 18200 3 (severe) 1.40% 0.40 640 m°  107.64

4 (severe) 8, 040 42 21600 Acoustical ceiling

5 (collapse) 5% 0.50 42 34300 1 (small) 0.55¢g 0.40 500 m’ 5.38
Contents 2 (extens.) 1.00g 040  500m’ 2579

1 (damage) 0.70g 0.30 50 500 Paint

| (damage)  033% 020  640m’  21.53

Table 2: Optimization results (when appropriate, the coefficient of variation is reported in parenthesis)

Case o [kN/(m/sec)™’] Fui(N) — C@) () Cud@)(S)  Cule ,0) (8)
. Chps 18,407.72 7,123 36.119
Dampers Cp> 12,189.28 4,380 115,710 79,588 It 5’%)
Ciia 6,528.64 2,014 :

No dampers - - 522,030 0 522,030
(3.3%)

Structure without dampers Structure with dampers Structure with dampers

Life-cycle cost Life-cycle cost Repair cost

Structural: 5%
Padition

Contents: 15% Partition:4% Structural: 1%

Partition: 14%
Cost of pie: $522,030 Cost of pie: $115,710 Cost of pie: §36,119

Figure 3: Details about life-cycle cost
7.3 Results and discussion

The number of evaluations, N, of the model response for each damper configuration is selected
to be N=2000. All simulations are performed exploiting the multi-core capabilities of the
Persephone high-performance computing cluster in the HIPAD Laboratory (http:/hipad.nd.edu)
at the University of Notre Dame. It is noted that approximately only 22% of the generated
sample excitation time-histories exhibit the long period velocity pulse, as a consequence of the
incorporation in the excitation model of the probability of occurrence of a pulse (as described
earlier), given the earthquake and site characteristics. The damper coefficients in each floor are
the three design variables ¢ = [Cpp i = 1,2,3]. The initial design space for each variable is set to
[12 20] MN/(m/sec)®’ for Cp;, [8.4 14] MN/(m/sec)”® for Cp and [6 10] MN/(m/sec)®’ for
Cp;s. Table 2 presents cumulative results from the optimization, which includes the optimal
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design configuration ¢, the maximum force capacities of the dampers for this configuration, the
total life cycle cost C(@"), the upfront cost of the dampers Cyi(@") and the repair cost for the
lifetime of the structure Cy{@",8), as well as the total life cycle cost for the structure without
retrofitting (Cp; = 0). The results illustrate the fact that retrofitting of the structure with fluid
viscous dampers leads to a significant reduction of the total life-cycle cost (= 22% of the cost of
the structure without dampers). Figure 3 then reports the distribution of the life-cycle cost and
the lifetime repair cost for both the structure with and without the fluid viscous dampers. It can
be observed that the retrofitting of the structure changes significantly the distribution of the
lifetime repair cost over the different components, since the addition of the dampers increases
considerable the relative importance of the acceleration sensitive components, while it reduces
the importance of the drift sensitive components. The important thing to remember is that the
design optimization in Table 2 and assessment of Figure 3 has been established using
comprehensive models to describe the system performance and the seismic hazard.

8 CONCLUSIONS

The optimal life-cycle cost based design of fluid viscous dampers was discussed in this study.
The basis of the suggested approach is a probabilistic, simulation-based framework that (a)
explicitly addresses all sources of uncertainty related either to future excitations or to the
structural configuration (b) facilitates a direct integration of advances in parallel/distributed
computing to significantly reduce the computational burden for estimating life-cycle cost and
thus (c) allows for adoption of comprehensive models for describing the structural system and
the regional seismic hazard. A versatile stochastic ground motion modeling approach was
discussed here for the latter. In the illustrative example considered the addition of the dampers
was shown to significantly improve the structure’s performance by reducing its life-cycle cost.
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ABSTRACT: The present paper considers the sequential decision optimization problem. This is
an important class of decision problems in engineering. Important examples include decision
problems on the quality control of manufactured products and engineering components, timing
of the implementation of climate change adaptation measures, and evacuation of people and as-
sets in the face of an emerging natural hazard event. Focusing on the last example, an efficient
solution scheme is proposed by Anders and Nishijima (2011). The proposed solution scheme
takes basis in the least squares Monte Carlo method, which is proposed by Longstaff and
Schwartz (2001) for pricing of American options. The present paper formulates the decision
problem in a more general manner and explains how the solution scheme proposed by Anders
and Nishijima (2011) is implemented for the optimization of the formulated decision problem.
For the purpose to demonstrate the use and advantages two numerical examples are provided,
which is on the quality control of manufactured products.

1 INTRODUCTION

Pre-posterior/sequential’ decision analysis has been proven to be a useful theoretical decision
framework for different applications in engineering. Classical successful examples include qual-
ity control of manufactured products, e.g. De Groot (1970), and risk-based inspection planning
and maintenance, see e.g. Corotis et al. (2005) and Straub and Faber (2005). Furthermore, re-
cently the concept of the pre-posterior/sequential decision analysis has been applied to real-time
decision optimizations in the context of early warning and operations of engineering facilities in
the face of emerging natural hazard events by Nishijima et al. (2008) and Nishijima et al.
(2009). Other important examples include the optimal timing of implementation of climate
change adaptation measures. In spite of these successful applications, there still is a general
challenge.

The challenge lies in that rigorous formulations of the decision problems often require excee-
dingly demanding computations to obtain the solutions. This is the case where a sequence of de-
cisions are allowed at multiple times in response to random phenomena. In such cases, the orig-
inal decision problems are often simplified and the solutions are obtained for the simplified

! The term "sequential” decision problem is utilized in Section 2 and later also for pre-posterior analysis,
appreciating the characteristics of the decision problem considered in the present paper; i.e., test and ac-
tion decisions are allowed sequentially. Such sequential decisions are, however, pre-posterior by nature.
Furthermore, although the length of the sequence may be finite or infinite in theory, only finite length of
the sequential decision problems are considered, which may be justified as approximation in practice.
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problems; however, the ways to simplify the problems are case-by-case, and justifications for
the simplifications require careful investigations.

The present paper presents an efficient solution scheme, which is proposed by Anders and
Nishijima (2011), and demonstrates the applicability of the solution scheme to a broader class of
sequential decision problems, with remarks regarding the application of the scheme.

2 FORMULATION OF SEQUENTIAL DECISION PROBLEMS

The sequential decision problems can be generally formulated as to find the optimal decisions at
the decision times based on the decisions made earlier and the information available up to the
decision times, considering the future states of the underlying random phenomena and the future
decision opportunities. An important constraint of the sequential decision problems assumed in
the present paper is that the random phenomena of relevance underlying the decision problems
are not affected by the decisions in the course of sequential decisions. For example, in quality
control of manufactured products a decision maker undertakes decisions on whether inspections
are to be continued or to be terminated in an inspection campaign; however, the decisions do not
change the probabilistic characteristics of the manufactured products; these only change the de-
cision maker's degree of belief. For another example, in the decision situation on the evacuation
of people and assets in an emerging natural hazard event, decisions have to be undertaken
whether the evacuation should be initiated or to be postponed in response to the information that
becomes available in real time. In this case, too, the decisions do not change the probabilistic
characteristics of the emerging natural hazard event. In contrast, for example, in the context of
risk-based inspection and maintenance optimization problems decisions to execute repair works
change the probabilistic characteristics of the realization of the structure.

Denote by A, the decision space consisting of possible decision alternatives at time ¢.
Here, time ¢ is discretized. It is further assumed that the decisions must be terminated before
or at time n; hence, 1€{0,1,2,...,n}. Time ¢ is in some cases technical; i.e. indexing the
number of decision time. In general, the decision space 4, depends not only on time ¢ but al-
so on the decisions made before time ¢. Especially, if the decision maker decides to terminate
the sequential decisions, no decision alternative is available at later decision times. It is thus
convenient to divide the decision space into two subsets; i.e. 4 =4 wWAY, 49N A4 =@
where A is the set consisting of "continuing" decision alternatives and A“ is the set con-
sisting of 'stopping" decision alternatives. Let the information space E, consisting of the
states of observable information at time 7, which depends on the decisions made up to time 7.

The optimal decision g, at time ¢ is identified as the one that maximizes the conditional
expected utility at time ¢ given the set of information up to time ¢ and decisions up to time
t—1 as:
fortr=0,1,...n-1

forf=n.

maxE[U (Z,a)]|q,
EU/(Z,a)|a,_,¢]= maXE[U(Za)l

el (1)

]’4

where, for @' e 4 and r=0,1,...,n-1,
ElU(Z,a'")|eg]= ,[ EU,,(Z,a,)| 4,0 ¢.,1f (e, |4 1,0, 8)de,, 2

Note in Equations 1 and 2 a; should be regarded as null. U,(z,a,) is the utility, which is a
function of the realization of the index Z relevant for the decision problem as well as the deci-
qion alternative a,. The index Z is defined through the underlying random sequence {Y t
=(g),.--,¢) Iis the set of information available up to time 7. g , =(a,,q,,...,a, ) isa set
of decisions made upto time ¢-1. f(.|.) is the conditional probability density/mass function
of E,, given a_,a'”,¢. The information ¢ may be observable with or without uncertain-
ty. Namely, e =y, or a deterministic function of y,; or the information e, may be probabil-
istically related to y,, i.e. the probability distribution of e, is defined conditional on y,. For
example, in the quality control of manufactured product, the index Z may be the failure prob-
ability of a product, the underlying random process ¥, may be a sequence of inspection out-
comes (e.g. good quality or bad quality) and e, =y, (i.e., the outcome of the inspection is de-

26




terministically know to the decision maker). Note from Equation 2 it is seen that the optimiza-
tion of the decision ¢, attime ¢ requires one to determine all the optimal decisions at future
times, ¢+1,7+ 2,...,n; hence, backward induction.

Equation 1 can be rewritten as follows:

maxi{h(a_.e).c.((a_.g)) forr=0,1,..,n-1
q,(a,.1,6)= thie w80} ©)
h(a, ,e), fort=n.
Here,
9.(a. &) =EU(Z,a)|a, e] (4)
hiag. .,8)= mE‘(X,!:(Q'J—HanQ)’ 5
aed!”
c(a,,¢)=max d((a,a,;e), (6)
a,e4'?
I(a.,a,,6)= E[U,(Z,a)|g.,¢], a, € 4" (7)
d! (gu‘fl’a("_e‘.') = E[q.“fl ((-Ql*l’al )’(Q’EH—] )) fglfﬂg ]’ al € Ai‘(c) & (8)

The evaluations of the functions 4,(a,_,e), t=0,1,2,...,n, are straightforward in a sense that
these do not require backward induction. On the other hand, the evaluations of the functions
¢(a,a,_,,e) require backward induction. However, it should be emphasized that no matter
how complex the structure of the decision optimization problem may seem, d (qa,,4, ,,¢) is
only a function of ¢ forany given g, a, (a € 4""); this observation plays a vital role in the
proposed solution scheme.

3 METHODOLOGY

3.1 Fundamental idea behind Least-squares Monte Carlo method

The Least Squares Monte Carlo method (LSM) is originally proposed by Longstaff and
Schwartz (2001) for the pricing of American options. The similarity of the structure between the
American option pricing and the sequential decision problems in the context of shut-down deci-
sions of engineering facilities in the face of evolving natural hazard event is pointed out by
Anders and Nishijima (2011). Based on this observation and focusing on the shut-down deci-
sion problem, they propose an efficient solution scheme for the sequential decision optimiza-
tions, based on the original LSM and relaxing several assumptions made specifically for Ameri-
can option pricing. In the following, the fundamental idea behind the LSM is explained. In the
subsequent section, the optimization scheme for the above formulated sequential decision prob-
lem is presented.

Consider the estimation of the expected values of g(X,e) for different values of parameter
ec £ by means of Monte Carlo simulations (MCS). Here, X is arandom variable and g(.,.)
is assumed to be a slowly-varying function with respect to both x and e. One way to estimate
E[q(X,e)] by MCS for different values of e is to estimate them individually. This way is il-
lustrated in Figure 1 (left). A more sensible way is to estimate E[g(X,e)] for different values
of e simultaneously by "sharing" MCS realizations simulated for different values of e, see
Figure 1 (right). This is performed as follows: (1) Simulate MCS realizations of g(X,e) for
different values of e. The values of e can be chosen deterministically but also chosen ran-
domly; (2) Assume a functional form for the approximation of E[g(X,e)]; (3) Estimate the pa-
rameters of the assumed function by the least squares method using the MCS realizations. Here,
it should be emphasized that a single MCS realization for each value of e can be enough as
long as the sufficient numbers of MCS realizations are available at neighbors of the respective
values of e.
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Figure 1. Estimations of the expected values by MCS: Individual estimations (left); simultaneous estima-
tion by sharing information (right).

3.2 Proposed optimization scheme to sequential decision problems

In the following, the steps to identify the optimal decisions by the proposed scheme are pre-
sented.

Step 1: The proposed optimization scheme starts by simulating MCS realizations,
Y, =¥ ¥seny,) s i=1,2,..,b, of the underlying random sequences lY, }Lo .

Step 2: Having simulated the realizations, for any given set of decisions g, , upto t=n-1
and for each realization of y,’, the sequence of information ¢’ is: (1) computed in case the
information e, is deterministically related to y,; or (2) simulated by the conditional probabili-
ty distribution of e, given y, (only one realization is simulated for each ). Note e’ de-
pends on g, ,; therefore, it should be denoted as ¢,'(a, ,). However, for simplicity unless con-
fused it is denoted as ¢,

Step 3: Since at time ¢=n the decision must be undertaken out of the set a, e A4,%" consist-
ing of stopping decision alternatives, the identification of the optimal decision at time 7=#
does not require backward induction. Therefore, the optimal decision at time =7 is obtained
straightforwardly for each ¢' and a,,. Equivalently, the maximized expected utility

=n

g,(a,,,e') attime » isobtained.

Step 4: Using the maximized expected utility g, (g, ,,e’) at time 7=n, d((a_,a)e) at
time 7=n—1 is obtained, employing the idea of LSM as follows: first, realize
q,((a,2.4,.).(¢.>¢,)a, .6 =q,(a,,¢’) ; second, generate the  pairs of
(¢.9.,((2,5,9,.).(e,4¢,))|a, ,.6."), see the black dots in Figure 2; third, assuming a
functional form and applying the least squares method, E[qf (&, 50, 668 a0 g 08 41
a4, is estimated. d,.((a,,.a,,)e.) a,, €4, " isobtained from Equation 8.

® MCS realizations:
Qu((gn—zﬁan-l)s(f.,,pei,,))fgn—za_e,:q i=1,2,...m

— Least squares estimation of
Elg,((a, 5,a,.).(e_.E, Na,..e.]

4.((8,5,a,,), (e, 1.e,)) [

-
’

Figure 2. Least squares estimation of E[g,((a, ,,a, ), _eﬂ_l(EH N4, 5.e,,] for each combination of
a,, and a, €4, "
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Step 5: ¢, (g, ,,€,,) is obtained using Equation 6. Since 4, (g, ,,e_) is obtained
straightforwardly, ¢, ,(a,_,,€,,) attime f=n—1 isobtained using Equation 3.

Step 6: Repeating Steps 4 and 5 backward for t=n—-2,n-3,..,1, the optimal decision at time
t=0 is identified.

3.3 Remarks on the proposed optimization scheme

3.3.1 Efficiency

The realizations of the underlying random sequence {Y, }"_O are simulated once at the first
step. In the remammg part of the optimization, these realizations are repeatedly referenced. It
may appear that, in some cases, additional MCS is required to estimate the expected utilities
corresponding to stopping decision alternatives at each decision time, if the values of these ex-
pected utilities are not analytically obtained; however, these additional MCS can be avoided as
presented in Anders and Nishijima (2012), by applying the idea introduced in Section 3.1 also
for calculating /(4 ,.q,.¢) .

The realizations of information E, (#=0,1,2,...,n) are simulated along with each realization
of the underlymg random sequence {Y } Assummg that the number of possible decision al-
ternatives is k£ at each decision time, the total number of the realization for E, is kxbxn.
The computational effort required for Steps 3 - 6 is proportional to #. Therefore, the total
computational effort for the optimization increases only proportional to #.

3.3.2 Choice of functional form for least squares estimation
Any regular function g(x) can be approximated as a superposition of basis functions (e.g.
power series, Hermite series, etc.) as:

£ =3 AL, (). ©

In principle, this can be utilized as a functional form for the least squares estimations in Step 4
in the previous section, and r, (k=1,2,...,K ) are to be estimated, where the argument
x =(x,,X,,...) in Equation 9 corresponds to (e,e,,...). However, more economical functional
forms can be often constructed as follows.

Consider a least squares estimation of E[q[+1 ((a_,a)(e,E,. )|, 1,_‘] for a given set of
a,_, and a, € 49 This is a function of e,,e,.....¢,, which seems to require 7 -dimensional basis
functlons Howcvcr for example if the 1nf0rmatlon E, follows or can be assumed to approx-
imately follow the s% -order Markov sequence (s<¢), only the last s information,
€,_.112€ o208, 15 the active arguments of the function; hence, the dimension can be reduced.
As another examplc if the information FE, is binary (e.g. 0 or 1), representing good quality or
bad quality m the inspection, only the sum 5, of e,e,,...e is sufficient to characterize

Elg,.,{(a,_.a,).(e.E. )| a_,e]; hence, the dimension can be reduced to one. Such reductions
of the dimension of the functional form increase the stability of the approximation of
Elg,.,((a_,a,)(e.E. ) |a,_,e] with a functional form by the least squares method.

4 EXAMPLES

For the purpose to illustrate how the proposed scheme can be applied and to investigate the per-
formance, the decision problems examined in De Groot (1970) are employed (Examples 1 and 4
of Chapter 12). These examples are selected here, since the analytical solution (Example 1) and
the boundary of the solution (Example 4) are obtained.
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4.1 Example 1. Sequential sampling from the Bernoulli distribution

4.1.1 Decision problem
A manufactured product is designed, and the performance of the product line is to be controlled.

For simplicity, the probability p that a product is good quality is assumed to be either 1/3 or
2/3. 1If p=2/3, the product line is satisfactory; otherwise unsatisfactory. It is to be judged
whether the product line is satisfactory. The decision maker has the option to perform inspec-
tions before her judgment. The maximum number of inspections is assumed to be #. The out-
comes of the inspections are the sequence of random samples ¥,Y,,....¥,, which independently
follow an identical Bernoulli distribution with a given parameter p=Pr[¥, =0]=1-Pi[¥, =1]
(0: good quality, 1: not good quality). The cost for inspecting one sample is assumed to be
c=1. Given that the design was made and the product line was built, the penalty is imposed if
and only if the judgment is incorrect, which is assumed to be ¢, =20. The prior distribution of
p is assumed to be £=Pr[p=1/3]=1-Pr[p=2/3] (0<£<1). The decision shall be
made for a given value of & whether the first inspection should be performed, or make the
judgment without any inspection. In the following the case of n=2 is considered, the analyti-
cal solution to which is available in De Groot (1970).

4.1.2 Application of the proposed scheme and result
The underlying random sequence Y, in this decision problem is the outcomes from the inspec-

tions, each of which follows the Bernoulli distributions of the parameter p, which in turn is
uncertain and is characterized by & =Pr[p=1/3]=1-Pr[p=2/3] . The information ¥y 48
equal to ¥;; ie. the state of the underlying random sequence is deterministically known to the
decision maker without uncertainty. The decision alternatives are a’ (continue sampling),
a" (terminate sampling and judge p=1/3) and & (terminate sampling and judge
p=2/3) at each decision time; hence, A4' = aw);, AP = {a“),a(z) . Decisions at a decision
time are possible only if 4 is chosen at all the earlier decision times.

The steps to apply the proposed scheme are explained for one value of &. These steps are
repeated in order to obtain the set of the solutions for different values of &, which are shown in
Figure 3. Note, however, such repetitions are not necessary in practice, since in a practical situa-
tion a single value of & is assigned based on the decision maker's degree of belief, for which
the optimal decision is to be identified.

The first step is to simulate the realizations of p,ie. p', i=12,..,b. For each p', the
realizations  of the underlying random sequence (¥,¥,) are simulated, ie.
(»'2,), i=1,2,..,b (Step 1). In this example, ¢’ =y,, i=1,2,.,b, t=1,2 (Step 2). The
expected cost for o attime r=2 is calculated for each realization (e,,e,'). For this, first
the probability of Pr[p=1/3] is updated with the realization (¢,e,’) by the Bayes' theorem.
Based on the updated probability the expected cost for a™ is calculated. The expected cost for
a® is calculated in the same manner. By comparing these two values, the optimal decision at
time ¢ is obtained for each ¢’ =(¢/,e,") . The maximized expected utilities, which are defined
as the negative of the ex?ected costs, g,(a.,e') , are obtained for each realization i (Step 3).
The expected cost for @ (continuing sampling) at time /=1 is assumed to be approximated
by r,+r,e. The coefficients 7,7, are estimated with the set of points (¢',q,(a,e")) by
the least square method. Then, the expected cost for «'” at time =1 is obtained for each
realization /. Note in this example, the functional form #,+# e, can precisely represent the
expected cost for a'?, since e takes only two values; thérefore, a function with two coeffi-
cients is flexible enough (Step 4). The expected costs for «® and a® at r=1 are calcu-
lated in the same manner as #=2 for each realization i. The minimum of the expected costs
for @, a" and a® is calculated for each realization i, whose negative values are the
maximized expected utilities at time 7=1 (Step 5). The average of these minimum expected
costs for all the realizations i is the estimate of the expected cost for @'” at time ¢=0. By
comparing this with the expected costs for @ and &', the optimal decision at time =0
is obtained. The optimal decisions for different values of & are shown in Figure 3. It is seen
that the proposed scheme performs satisfactorily.
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8 = -
Tt -
oW
3 B j 1
o ; !
[} A Y
‘8‘ 5 &
o \_-
s 4 '
o 7 (218
33 :
£ v,
£ 2
=
1t i 3
i32/97 i65/97 w
0¢ - —— =)
0 01 02 03 04 05 06 07 08 09 1
Not to inspect To inspect Not to inspect

Optimal decision at time 0
Figure 3. Optimal decisions in Example 1.

4.2 Example 2: Sequential sampling from the normal distribution

4.2.1 Decision problem

A manufactured product is designed, and the performance of the product line is to be controlled.
The quality of the product is measured through an indicator ¥ and the indicator follows the
normal distribution with unknown mean W and known precision r (= inverse of variance).
The decision maker has the option to perform inspections before her judgment. The maximum
number of inspections is assumed to be » . The outcomes of the inspections are the sequence of
random samples Y,,Y,,....Y,, which follows the identical distributions as Y . The random sam-
ples are observable without uncertainty to the decision maker; hence, the information E, =Y, .
The decision maker has to judge whether the mean of Y is above w, or not. The penalty of
misjudgment is proportional to the difference between the true mean value w and wy; ie.

L =|w—w, |. The cost for one inspection is ¢.

4.2.2 Application of the proposed scheme and result

The decision alternatives are a'” (continue sampling), @ (terminate sampling and judge
w<w, ) and a*¥ gterminate sampling and judge w>w, ) at each decision time;
A9 =1a9}, 49 =1a® a®}. Decisions at a decision time are possible only if a'” is chosen
at all the earlier decision times. In this example, the expected cost for continuing sampling at
time 7 is found to be a function only of the average m, of the realizations of
g =(e,e,,...e,). Here, a functional form 7, +7, m, +r,m>+r m’ is assumed for the least
squares estimation, where m, = ZF e, /t. Note that other functional forms are tested and the
results are found to be insensitive fo the choice of functional forms.

The optimal decisions are computed and shown for different values of the mean x and pre-
cision 7 (inverse of variance) of the unknown mean W, for the case where n=10, w, =1
and ¢=0.2, see Figure 4. The optimal decisions obtained by the proposed scheme are indi-
cated with the symbols. The optimal decision bounds for the case where » is infinite are ana-
Iytically obtained by De Groot (1970) for a subset of x and 7 : At the left side of the left line
in the figure the optimal decision is &', at the right side of the right line the optimal decision is
a" for w<1 and &% for w>1, and between the two lines, optimal decisions are not ob-
tained. Given that n=10 is sufficient large, these two results are comparable. As can be seen
in Figure 4, the optimal decisions obtained by the proposed scheme corresponds to the optimal
decisions obtained by De Groot (1970); furthermore, the proposed scheme can identify the op-
timal decisions in the domain where the optimal decisions are not obtained by De Groot (1970).
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Figure 4. Optimal decisions in Example 2.

5 CONCLUSION AND FUTURE WORK

An optimization scheme for a class of the sequential decision problem is proposed. The class of
the decision problem is characterized as: the random phenomena of relevance underlying the
decision problems are not affected by the decisions in the course of sequential decisions. The ef-
ficiency and advantages of the proposed optimization scheme are demonstrated with two numer-
ical examples on the sequential sampling in the context of quality control of manufactured
product. Note however that under this framework variable decision rules or competing decision
rules are possible. .

In the examples, the updated probability distributions given the information g can be ob-
tained analytically. However, in general this is not the case. In such cases, Markov Chain Monte
Carlo simulations to simulate a realization(s) from the updated probably distributions may be
useful; the implementation of which is addressed as a future task.

An engineering application example of the presented scheme is provided in an accompanying
paper by Anders and Nishijima (2012) in the context of early warning for avalanche.
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Enhanced least squares Monte Carlo method for real-time
decision optimizations for evolving natural hazards

A. Anders & K. Nishijima

Department of Civil Engineering, Technical University of Denmark, Denmark

ABSTRACT: The present paper aims at enhancing a solution approach proposed by Anders &
Nishijima (2011) to real-time decision problems in civil engineering. The approach takes basis
in the Least Squares Monte Carlo method (LSM) originally proposed by Longstaff & Schwartz
{(2001) for computing American option prices. In Anders & Nishijima (2011) the LSM is
adapted for a real-time operational decision problem; however it is found that further improve-
ment is required in regard to the computational efficiency, in order to facilitate it for practice.
This is the focus in the present paper. The idea behind the improvement of the computational ef-
ficiency is to “best utilize” the least squares method, i.e. least squares method is applied for es-
timating the expected utility for terminal decisions, conditional on realizations of underlying
random phenomena at respective times in a parametric way. The implementation and efficiency
of the enhancement is shown with an example on evacuation in an avalanche risk situation.

1 INTRODUCTION

Real-time decision optimization has become an interesting and challenging topic with the pro-
gress of real-time information processing technology. Relevant applications in civil engineering
include situations where operational decisions have to be made in response to real-time infor-
mation on evolving natural hazard events. In these situations, all real-time information available
can and should be best utilized to find the optimal decisions at respective times; taking into ac-
count not only possible future outcomes, but also opportunities to make decisions in future
times. This type of decision problem is generally described within the framework of the pre-
posterior/sequential decision analysis, see Nishijima et al. (2009); however, the development of
efficient solution schemes to the formulated decision problems has remained a technical chal-
lenge.

An efficient solution scheme is proposed by Anders & Nishijima (2011), taking basis in the
Least Squares Monte Carlo method (hereafter, abbreviated as LSM), which is developed origi-
nally by Longstaff & Schwartz (2001) for American option pricing. In Anders & Nishijima
(2011) the original LSM is extended and applied to an example for a real-time operational deci-
sion problem for shut-down of the operation of a technical facility in the face of an approaching
typhoon. However, due to multiple evaluations of the expected consequences for different pos-
sible future states of the typhoon by means of Monte Carlo simulation (MCS), the solution
scheme becomes less efficient, if the computational time required for MCS becomes dominant.
The present paper proposes an enhanced solution scheme, which overcomes this drawback.

The present paper is organized as follows. Section 2 formulates the real-time decision prob-
lems in consideration within the framework presented in Nishijima & Anders (2012). Section 3
provides a brief introduction to the extensions of the LSM. Thereafter, the proposed enhance-
ment to the extended LLSM is introduced. Section 4 presents an application example, which illus-
trates the performance of the enhanced LSM (eL.SM). Section 5 concludes the presented work.
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2 REAL-TIME DECISION FRAMEWORK
2.1 Problem setting

The decision situation considered in the present work is characterized by the following charac-
teristics, see Nishijima et al. (2009): (a) The hazard process evolves relatively slowly and allows
for reactive decision making; (b) information relevant to predict the severity of the evolving
hazard event can be obtained prior to its impact; (c) the decision making is subject to uncertain-
ties, part of which might be reduced at a cost; (d) decision makers have options for risk reducing
activities which may be commenced at any time, supported by the information available up to
the time. Here, “waiting” to commence the risk reducing measures implies the reduction of un-
certainty but might also reduce available time to complete the risk reducing activities; (e) and on
top of all, the decisions must be made fast, in near-real time. The decision makers are then re-
quired to make decisions whether they commence one of the risk reducing activities which at
the same time terminates the decision process (hence, hereafter these are called terminal deci-
sions) or they postpone making a terminal decision.

2.2 Formulation of decision problem

The decision problem characterized above can be formulated in accordance with Nishijima &
Anders (2012). Denote by A4, the decision set consisting of possible decision alternatives at
time ¢. Here, time is discretized. It is assumed that the decisions must be terminated before or
at time »n; hence, r={0,1,2,..,n}. The decision set A4, generally depends on the decisions
made before time 7. If a decision maker decides to terminate the decision process, no decision
alternative is available at later decision times. It is thus convenient to divide the decision set into
two mutually exclusive subsets; ie. 4 =4 U4, 494 =@ where A4 consists of
one decision alternative &, “waiting” (ie. 4 ={a}) and A4 is the set consisting of
risk reducing decisions available. Let E, be a set of variables representing possible infor-
mation available at time ¢ on the states of the evolving natural hazard event in consideration.

Given that no terminal decision is made up to time ¢, the optimal decision @, at time ¢ is
identified as the one that maximizes the expected utility at time ¢ conditional on the collection
of the information up to time /:

max E[U,(Z,a,)|e], fort=01,..,n-1

® aed,
ElU(Z,a)|e]=7 1
WZa)le] max E[U, (Z,a)|e], fortz=n @
aeAM”

where, for #=0,1,...,n—1 and a,(“’ .
E[U.' (Z’ ar(c)) | gx] = IE[U!H (Z’ a:+l) | a!(l") ’EHI ].f(e.'ﬂ I’E‘ )deHl H (2)

Here, U,(z,a,) is the utility, which is a function of the decision alternative @, and the realiza-
tion z of the hazard index Z relevant for the decision problem. The hazard index Z is de-
fined through the underlying random sequence {Y,}" . representing the evolution of the natural
hazard event. € =(e,,e,,....e,) is the collection of the information available up to time .
Here, it is assumed that y, =e,, (f=0,1,...,n); namely, the state of the event relevant to the de-
cision problem is known to the decision maker without uncertainty. Thus, the symbols y, and
e, are ulilized interchangeably in the following. /,(.|e,) is the conditional probability densi-
ty/mass function of information E,, given E, =e,. From Equation 2 it is seen that for the
decision @ attime ¢ the optimization requires to know all optimal decisions at future times,
t+1Lr+2,.,n; hence, backward induction is required. Equation 1 can be rewritten as:

_ |max{h(e)c(e)}, fort=0,1,..,n-1
()= { o e ©)
Here,
q9.(¢)=E[U,(Z,a)|e] 4)
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k()= max/(a,.e) )
aedt?

I(a,8)=E[U(Z,a)|e], a €A (6)
¢,(e)=Elq,,((e.E.)|e]. (7

The function ¢,(e), #=0,1,..,n, is the maximized expected utility, hereafter abbreviated as
MEU. The functions A(e) and c,(e) are named stopping value function (SVF) and contin-
uing value function (CVF), respectively. Note that, whereas the evaluation of the SVF is
straightforward in the sense that it does not require backward induction, the evaluation of CVF
requires backward induction. However, no matter how complex the structure of the decision op-
timization problem may seem, L,) is only a function of e, . Furthermore, if the underlying
random sequence {Y,}', follows s" -order Markov sequence ¢,(e) is a function effectively
of the last s information, e,__;.€,_ ,,...€,.

3 ENHANCEMENT OF THE EXTENDED LSM

3.1 Extended LSM

The main technical challenge of the optimization problem formulated in Section 2.2 is the eval-
uation of the CVF. The CVF can in principle be evaluated by calculating the expected utility for
each combination of all possible discretized future states and possible decision opportunities.
However, in practice this is not computationally feasible, since the total number of the possible
combinations increases exponentially as a function of the number #. The LSM circumvents
this by employing the least squares method. The idea behind the LSM is that any regular func-
tion can be represented by a linear combination of an appropriate set of basis functions; there-
fore, the CVF is approximated as such, for details see Longstaff & Schwartz (2001). In the con-
text of American option pricing, this means that if the price of a stock follows a first order
Markov sequence, the price of its American option is a function only of the current stock price.
Consequently the CVF is approximated as a superposition of basis functions whose argument is
only the current stock price. The way on how this idea is implemented in the optimization is ex-
plained along with the extended version of the LSM (called extended LSM) in the following.

In Anders & Nishijima (2011), it is demonstrated that the idea behind the LSM can be applied
for the case where the underlying random sequence follows an inhomogeneous higher-order
Markov sequence. Therein, two extensions are made: (1) the assumptions on the underlying
random sequence is relaxed from stationary first-order Markov sequence to non-stationary high-
er-order Markov sequence, and (2) the SVF is evaluated by MCS. Note that in many engineer-
ing applications the SVF cannot be evaluated analytically, unlike the case when executing
American options. Moreover, the MCS in the second extension is computationally expensive
and the computational effort increases proportional to . In the following, the steps of the ex-
tended LSM are presented:

Step 1: A set of b independent realizations (paths) of the random sequence Y, is generated
by MCS according to the Markov transition density f,(y,,, |yf) 1=0,1,...,n—1 with the initial
condition Y, =y,, where y, =(¥.¥;...,¥,). These paths are denoted by Y = (Y5 ¥ienh)s

i=12,..,b, where Yo =¥, forall paths, see Figure 1 (a).

Step 2: The SVF for all realizations {y.}.,, i=1,2,...,b, are estimated by additional MCS.

Step 3: Starting at the time horizon » as illustrated in Flgure 1 (a), for each path i the value
of the MEU q,((y,.,Y,)) isidentified by equating g,(y,)=#,(y,) according to Equation 3.

Step 4: Movmg to time 7 -1 the CVF is approximated. This begins by relating each MEU

q,(y)) to y, ,» to obtain the dataset (y,_ J,q,,(y”)) i=1,2,...,b, see the dots in Figure 1 (b).
This dataset is utilized to approximate the CVF ¢, (y,,) with thc least squares method. The
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approximated CVF is illustrated by the curve in Figure 1 (b). See Nishijima & Anders (2012)
for details. The approximated CVF is denoted by ¢é, (Vi)

Step 5: Having obtained & _,(y, ) fortime ¢=n—1, the realizations of 4,0y, Y, ), le.
g,1(¥,1)> i=12,..,b, are determined as follows: -

; By (Y,), i B (¥r1) > 601 (Fat)
Gl =] 0, N - ®)
= q,(y,), otherwise.
The procedure is repeated backwards in time until #=1, hence ¢, (Xj ) is obtained for all paths.

Step 6: At =0 the estimate &, =¢&,(y,) is defined as the average of the realizations 7.,
i=1,2,..,b. Finally g,(y,) is obtained as the maximum of &(y,) and hy(¥,) . The optimal
decision is the one that corresponds to the maximum.

(a) (b) » Realizations (vi.1.g.(y.))
GAYy) - Estimated function ¢, (¥, )

® ooee menee

Y-

1‘..‘5.‘. .
Yo [ Yn :
W % P i
0314 ;‘:‘
LY l

=0 ¢=l 1=2 - t=n-l  t=n C Y1 )

Figure 1. Illustration of (a) three paths of a underlying random sequence with corresponding values
9,(y,) (:=1,23) attime » and (b) the estimation of the CVF using the sets (y,_,q,(y.))-

3.2 Enhancement of the extended LSM

As seen in Section 3.1, additional MCS are required in Step 2 to estimate the SVF in the ex-
tended LSM. The enhanced LSM (eLSM) circumvents this by applying the least squares method
for the estimation of the SVF. The general idea is explained in the following.

Analogous to Equation 5 the SVF £ .. (y,) of the eLSM is defined as maximum of the
conditional expected utilities /5, (a”,y,) with respect to the terminal decisions a'”’ € 4®),
Here, the functions /., (a’,y,) are estimated with the least squares method using the reali-
zations {y/}’ , similar to the estimation of the CVF described in Section 3.1; i.e. by linear

combination of basis functions {Z, ()}, with unknown coefficients 7}’

0 ~ ¥k j
lr,eI,SM (azj !X.') = Zk:1 Lr,k (X! )r;f;:J (9)
Therein the least squares method is utilized to estimate the coefficients r'’ = (n, 7)., <Dy
by minimizing the sum of the squared distances between the observed realizations of the de-
pendent variable /, \ (a'”,y,) in the dataset and their fitted values; in the matrix form this is

expressed by
r” =argmin, [|uf” ~L,r|} (10)

(3
where |||, denotes the Euclidian norm, L, is a bxK matrix consisting of values of basis
functions {L, ()}, which are functions of realizations of y, and u'’ the bx1 vector of
observed future utilities u, (zl,af’ )) » i=1,2,..,b, given the realization z' of the hazard index

related to the path y, and decision o’ is made at time ¢. Note that u,(z,a'’’) is a realiza-

i

tion of 7, ;5 (a”,y;). Furthermore, to avoid a bias introduced by the least squares estimation

within the determination of the MEU, Equation & is changed to:

w(2,a), A (V) > & s (v) -
racsm (¥rer), Otherwise

9 e15M (X:) = {

where u;(z',a,) is the observed future utility of path i for the optimal terminal decision a .
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4 EXAMPLE

The aim of this section is to demonstrate how the eLSM can be applied to an engineering deci-
sion problem and to compare its performance to that of the extended LSM. For this purpose, a
decision situation of the evacuation of people in the face of an avalanche event is considered.

4.1 Problem setting

Consider a village located nearby a mountain slope having a critical angle for snow avalanches.
Given prevailing winter conditions and critical snow heights, a decision has to be made whether
to evacuate people from the village. Assume that the occurrence of a severe avalanche, causing
significant damages to the village, depends only on the additional snow height §,; ie. S, is
the hazard index. Further, if S, exceeds the threshold § (=800 [mm]) a severe avalanche oc-
curs. Weather forecast by a meteorological agency predicts that snowfall can occur within the
next hours, which increases the likelihood of the occurrence of the avalanche. However, the du-
ration and the intensity of the snowfall are uncertain. New information becomes available every
8 hours from the meteorological agency; i.e. the time interval between the subsequent decision
phases is set to 8 hours (df=8). At each decision phase a decision is made according to infor-
mation available. Three decision alternatives are assumed; i.e. to evacuate the people a, not
to evacuate @, and to wait @'’ . It is assumed that the evacuation takes 16 hours to complete.

4.2 Consequence model

The consequences are postulated as follows, see also Table 1: The consequence is equal to
C,, =1 in two cases: (1) when the evacuation has been initiated but the avalanche does not oc-
cur, and (2) when the evacuation is completed before the avalanche occurs. A consequence of
€, =10 is incurred if the avalanche occurs and the people are not evacuated or the evacuation
was initiated but not completed. No consequence is incurred only in the case when no evacua-
tion is initiated and no avalanche occurs.

Table 1. Conditions and associated consequences postulated in the consequence model.
Additional snow height in the time period [0,¢]

People S, > § =800[mm] S <5 =800[mm]
Not evacuated C,=10 0
Evacuated C'g =1 C, =1

4.3 Probabilistic snowfall model

A hypothetical probabilistic snowfall model is assumed, which is adapted from a rainfall model
developed by Hyndman & Grunwald (2000). Let X, denote the random sequence representing
the amount of snowfall in the time period (¢ — df,¢]. Hereafter, this time period is denoted by
(t—1,¢] (i.e. the time unit is df=8) and thus {X,}7, for simplicity. The distribution of X,
is a mixture comprising a discrete component concentrated at x, =0 and a continuous compo-
nent for x, >0. The discrete component of X, represents the non-occurrence of snowfall and
is characterized by the Bernoulli sequence J,, whose conditional probability function is:

Z (¥ ¥ea) = PO, =1 1Yy =Y Yoy =y, ) =16 (Y oY 2)) (12)
where Y, =(J,X,) and /() denotes the logit function which is defined as
[(w)y=exp(g)/ (L+exp(p)) if £>0 and /(x)=0 otherwise, and

(YY) =0 + i + oy g log(x, +6) + e, log(x,, +6,) + agt’ (13)

i

snowfall. If J, =1, X, is described by the continuous conditional density g (x|y,,), x>0.

g,(-|) follows the Gamma distribution with shape parameter x and mean v,(y, ), where

log(v,(y, )= By + Bujis + B log(x, +¢,)+ ﬁarz . (14)

The continuous component of X, is strictly positive and characterizes the intensity of the
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Then the transition probability density function of X, is defined as (see Figure 2):

.ft(xi l yf—l’y!—z) = (17 Ef(yl—vyf—z))é‘n(xf) + jT: (Yr—l ? YJ—Z)gx (xl l y:—l) (15)
where &, is the Dirac delta function. The additional snow height is obtained by multiplying
the snow intensity by the factor F, which accounts for the density of the snow; i.e.

S, =8,)=20 JFx, =S+ o . (16)

Hence, S, (the hazard index) at time 7 is characterized by the index S, at time ¢—1
and a stochastic process composed of a second- and a first-order Markov process (the second
term in the rightmost equation). The values of the parameters of the model are summarized in
Table 2. The time frame is set to three days; i.e. n=9,

Table 2. Parameters of the probabilistic snowfall model.

Parameter Value Parameter Value
,r,J,.,Sn 0,0,0 e=(c,c,5¢,) (0.15,0.3,0.5)
Qs 4.5,0.26,0.1,0.5,0.05,—0.2) & 1.5
ﬁﬂ . /5‘2, 1.95,-0.2,0.25,-0.04) F 10
G AR Y
-
HH
b
5
I
I (¥, ¥_a) g (x| Yoy)
0
0
0

X
Figure 2. Illustration of f,(x]y,.¥,,).

4.4 Solution with the eLSM

Here, the MEU in Equation 3 is defined by the expected consequence; i.e. the minimum opera-
tor is used and the inequality sign of Equation 8 is turned. The steps in Section 3.1 are execut-
ed with the extended LSM and the eLSM to obtain the optimal decision.

Step 1: By MCS, generate % independent realizations of {Y,}7, and § =(5.,5/,...5}),
i=1,2,..,b, where § =58/(y!) and y,—(jr,x) The realizations yl,yz, Y. are simulated
accordmg to the probablhty dén51ty functions in Equations 12 and 15; the paths are denoted by

y =@y pyo) 2Y,), where y', =y_, Yo=Y, and i=12,.,b.

Step 2: For each y, the value % =A(y,,y,,) of the SVF is estimated. At time n=9 the
consequence related to each realization and decision is assumed to be known; i.e. elther s, ex-
ceeds the threshold § or not, thus A, . =4, o, forall i.Further, for 1=1,2,.

(1) with the extended LSM: Slmulatlon of additional M paths y*" =(y' ,. ,y,,ym, V™5
m= 12 M , for which the observed consequences w,(s", a(”) J=12, are determined.
Here s” is the realization of the additional snow hr:Ight related to the path realization y”"

Define [ ,,.(a”,y,y" )= Z 4, (s",a”)/ M , then

h: Mc = mm{ wc(a(l)= V¥ )’l:,Mc(a:(Z)an; YZ}J} (7

(2) with the eLSM as explained in Section 3.2; Define
h:FeLSM = min{lr eLSM (a'(l),y;’ Yi—l)vlf eLSM (ar(z)’y: Vi) (18)
where f: asl@ ¥y Y=L P, 7=12, Thc vector rm of the coefficients related to @'’

is computed by Equation 10. L denotes the i row of matrlx L,; L, consists of values of
basis functions with arguments y,, y,, and S ;e.g for 1" order lmear basis functions
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1 ¥ 1

1 xf xF—T Sl

1 % x5
L= " T (19)

1 % X, s

A~y A . ~ " h i 1 .
For 1=0 set ig" :]n,Mc(al(Jj)J()’Y—i): U,eLSM(a((Jj)va’y—l):Zf:luli(s il J =1,2.

Step 3: Starting at time 7, for both LSM approaches, the values of Gpye = GoracYurYna) a0d
q,asm Ar€ Set equal to 7z, e and H, ersms respectively, forall 7.

Step 4: Moving (0 time n—1 the values of 1 (¥ s¥o2) @€ similarly estimated for both
approaches using the least squares method as described in Section 3.1.

Step 5: Then, for each path i determine the values of qn_l(y”_l,y"_z):
(1) for the extended LSM with the estimate h e obtained by means of MCS:

q. = h;-! MC? if h;—l,M(i < é::—l,MC (2(])
wIME T g s Otherwise
2) for eLSM with the estimate i obtained by means of the least squares method:
;1 cLSM Y q
i _ ”:iv if ﬁi—l,eLSM <éiﬂ—1,cLSM 21
Tr-veLsm {q,’mmw otherwise @

where u, denotes the observed future consequence in path i for the optimal terminal deci-
sion a,_,. As in Section 3.1, moving another time step back the same procedure is repeated.
This is continued until time =1 and for each path gjye and Giasu 2rC determined.

Step 6: Execute Step 6 of Section 3.1.

4,5 Results

To evaluate the performance of the eLSM compared to the extended LSM, both methods are
applied to solve the decision problem of the example. The optimal decision at the initial time is
obtained by estimating the expected consequences for the three decisions alternatives. Various
types and degrees of basis functions are implemented; e.g. linear, Legendre and Chebyshev pol-
ynomials. Applying these basis functions, it is found that the results do not significantly differ.
Thus, only the results obtained with linear basis functions are presented.

Figure 3 illustrates the findings for different parameter cettings of the LSM. Therein, Figure 3
(a) shows for increasing number b of paths, b :{102,3-10 ,103,3-]03,104,3-10“,105}, the
convergence of the consequence estimates for the three decisions. For each b the estimates are
calculated by the average of 100 computations of the indicated method. To be able to compare
the results 100 different yet fixed sets of random numbers are used to generate the paths in Step
1. Hence, the estimates for the terminal decisions are identical for all methods; they are present-
ed by solid lines with circles. The following results are obtained for b=10": [V =1.0192,
[ =0.8969 and e.g. 8y asy = 0-8055 with the eL.SM. The optimal decision is @ which is
independent of the type of LSM; sec Figure 3 (a). Further, the figure shows that the estimate &
obtained by the extended LSM with M =10 is biased. Therefore it is not considered in Figure
3 (b) which illustrates the convergence rate in terms of the coefficient of variation (COV) of the
estimates &, as a function of the computational time [sec]. The figure shows a significant im-
provement with the eLSM in terms of computational time; a reduction by the factor of 100.

An application of the proposed approach in practice is presented in Figure 4. Figure 4 (a) il-
lustrates a hypothetical time series of the additional snow height {8}, where the threshold
5 is exceeded within the time interval (3,4]. Applying the ¢ SM subsequently for each time
step it is found that the optimal decision at time 1=0 is a whereas at time ¢=1 it is found
tobe a® given that the snow height at time =1 in the figure is realized.
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Figure 3. Comparison of the results of the extended LSM (with various numbers M of additional MCS)
and eLSM. (a) Convergence of the average expected consequences with increasing total number of paths.
(b) Ilustration of the decreasing COV of ¢, related to the increasing calculation time for one LSM
computation as the number & of paths increases.
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Figure 4. Tllustration of () a hypothetical time series of S, and (b) the corresponding time series of the
estimated expected consequence of the three decision alternatives calculated with the eLSM and b =10’

5 CONCLUSION

The present paper proposes an enhancement of the extended LSM in the context of real-time
operational decision problems for evacuation in the face of emerging natural hazards. The pro-
posed approach (eLSM) is applied to an example and it is found that the el.SM significantly im-
proves the computational efficiency; by the factor up to 100.

6 ACKNOWLEDGEMENT

This research was partly supported by the Swiss National Science Foundation (Project number:
200021-125263).

REFERENCES

Anders, A. & Nishijima, K., 2011. Adaption of option pricing algorithm to real time decision
optimization in the face of emerging natural hazards. Proceedings of 11th International Conference on
Applications of Statistics and Probability in Civil Engineering M. H. Faber, J. Kohler and K.
Nishijima, Zurich, Switzerland.

Hyndman, R. J. & Grunwald, G. K., 2000. Generalized additive modelling of mixed distribution Markov
models with application to Melbourne's rainfall. Australian & New Zealand Journal of Statistics, 42
(2): pp. 145-158.

Longstaff, F. A. & Schwartz, E. 8., 2001. Valuing American Options by Simulation: A Simple Least-
Squares Approach. The Review of Financial Studies, 14 (1): pp. 113-147.

Nishijima, K. & Anders, A., 2012. Optimization of sequential decisions by least squares Monte Carlo
method. Proceedings of 16th IFIP WG 7.5 Working Conference, Armenia, Yerevan.

Nishijima, K., Graf, M. & Faber, M. H., 2009. Optimal evacuation and shut-down decisions in the face of
emerging natural hazards. Proceedings of ICOSSAR2009, H. Furuta, D. M. Frangopol and M.
Shinozuka, Osaka, Japan.

40



Reliability and Optimization of Structural Systems — A. Der Kiureghian & A. Hajian (eds)
© American University of Armenia, Yerevan, Armenia, ISBN 978-0-965 7429-0-0

Sensitivity analysis methods for reliability
problems
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ABSTRACT: In reliability problems an important aspect is the study of the influence of
parameter changes on the target reliability which is often more an operational value. Since
in complex problems such quantities have to be computed often, efficient methods for do-
ing this are desirable. Here some methods for sensitivity analysis are outlined. For a
FORM/SORM analysis it is possible to get sensitivity measures from the Lagrange mul-
tiplier at the beta point. This allows simple estimates for the sensitivities with respect to
parameters without additional computations. In the general case the partial derivatives
and sensitivities of the failure probability with respect to parameters are given by surface
integrals over the limit state surface. Such integrals can be transformed into domain inte-
grals over the safe domain using the divergence theorem (Gauss-Ostrogradsky theorem).
By modifying the integrands in a suitable way, it is possible to modify the integration
domains such that the integrals can be estimated in a more efficient way.

1 INTRODUCTION

In many reliability problems one has parameters which can be varied or are not exactly
knowrn. Therefore the influence of changes in these parameters is an important information
in studying such problems.

The basic reliability problem is in the form

P= f(zx) dz (1)
9(T)<0

where P is the failure probability, f(x) is the probability density function and g(z) the
limit state function. If we consider the existence of parameters, the more general form of
this problem can be written as:

P(8:,85) = /g wgye @02 @ ()

Here the first parameter vector 6; includes the parameters of the limit state function and
the second vector @5 includes the parameters of the probability density function.

For sake of simplicity we will study here only the case that the limit state function
depends on a single parameter 7, i.e. integrals of the form:

P(r) = [g ey F@) 2 3)

These results can be generalized for the more complex cases.
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Figure 1: The movement of the PML-point as function of 7

2 PARAMETER DEPENDENCE OF THE PML-POINT

For the functions f and g : R™ — R in eq. (3) let the gradients of these functions be
denoted by Vg f (resp. Vzg) and the partial derivative with respect to 7 by g-. The
Hessian of f is written as H and the Hessian of the function g(x, ) with respect to the
first n variables is written as H,. We assume that for a fixed value of 7 there is a unique
PML (Point of maximum likelihood) #*(7) and we write in a shorthand notation =*. The
vector of the first derivatives of @ with respect to 7 is written as x=.

In the case of a standard normal distribution the PML is the beta point. This point =*
is a stationary point of the Lagrangian function L(z, A, 7) defined by

L=f-)g (4)
Therefore for the point ™ the following equation system must be fulfilled for arbitrary 7:

ij = )\Vmg = Op,
g =0 (5)
with o, the n-dimensional zero row vector.
To find now the derivatives of the coordinates of the PML with respect to changes in the

parameter 7, we differentiate this system with respect to 7 and set all derivatives equal to
zero. Differentiating the term in the i-th row (1 < i < n) gives

d [3f(&'f’f(f)w~-ﬂ-"3‘("f)) B /\ag(w’i‘(f);---,:ﬁi‘(f)J)J

Oz, Ox;
_ 3 [P0 me) | Pete). e, 7)) dzyin)
— Oz;0z; Ox;0x; dr
i=1 ik
B 9g(zi(7), ..., 2i(7),7) , Bg(ei(r),...,z}(7),7) _
Ar Az; A x0T =0 (©)

and for the last line we get:

i=1

42




This yields written in vector notation:
Hx] — AHgxr — A Vgg—AVxgr = on,
(Vzg)Tzr+g- = 0 (8)
Rearranging the terms we get:
(Hf — AHg)x; — AVzgr — A\Vaeg = 0n
(Vag) i +g- = 0 (9)
This is a linear equation system with the n 4+ 1 unknowns =¥ and A,
(Hy —AHg)zr —A-Vgg = AVggr
—(Vag) @ + A0 = gr (10)

The solution is then:
( :l'u:- ) o ( Hf - /\Hg 7v$g -1 Avﬂ?g‘r
A )T —VCBQT 0 gr

The result for standard normal densities was derived by Enevoldsen (1994). This can be
generalized for the case of several equality and inequality constraints.

3 SURFACE INTEGRALS OVER BOUNDARIES OF STAR-SHAPED DOMAINS

For some special cases it is easy to calculate surface integrals, i.e. convex and star-shaped
domains. For a given star-shaped domain D (i, for every point in the domain I) all
points on the straight line between the origin and this point are in D) we consider a
surface integral over the boundary of the domain given by limit state function g(z)

I'= /g(m)zoh(:c) ds(a) (11)

with ds(z) denoting surface integration. This integral can be computed using directional
sampling. Let u;, i = 1,...,k be independent random unit vectors each with a uniform
distribution over the n-dimensional sphere. Then an estimate of the integral is given by

k
f=ry Fln) (12)
i=1
with
271,1;/2 ; n—1
r) = (o) M e

where z; is the point where the ray from the origin in the direction of the normal u,; hits
the surface and n(z;) = |Vg(x)|"'Vg(z) is the surface normal of the surface {g(x) = 0}
at this point. The term in the round brackets is the surface of the unit sphere in the n-
dimensional Euclidean space. The term in the second denominator is the cosine between
the directions of u; and n(x;). The denominator adjusts the weight of the sample point
to take into account the projection onto the unit sphere (see for example Thomas and
Finney (1988), p. 1040).
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4 THE SENSITIVITY OF INTEGRALS OVER THE FAILURE DOMAIN

For the general case Straub (2011) proposed a method based on replacing the surface
integral by a domain integral using an auxiliary variable. Here we describe an alternative
which allows also to calculate such surface integrals with holes in the safe or unsafe domain.

Given is a limit state function g(z, 7) depending on a parameter 7. To find the derivative
of the integral with respect to the parameter 7, we write the difference

P(r + k) — P(r) = /g e @V fg o F@) (14)

This can be written making a coordinate transformation (see figure 2) as
S(x)
Lanolh f@+s@mn(@) s + soin(e)ds (@) (15)
g(@,r)=0J0

J(x +d(z)n(x)) is the Jacobian of the coordinate transformation and the outward point-

Figure 2: The difference P(r + h) — P(7)

ing surface normal is n(x) = Vgg(x,7)|Veg(z,7)|7!. Further ds,(y) denotes surface
integration over the surface {g(w,7) = 0}. Due to the choice of the coordinate transfor-
mation we have that J(x) = 1. The value of § is implicitly defined by

g(z+ 8(z)n(x), 7+ h) =0 (16)
To find an explicit formula for 4(x), we make a first order Taylor expansion of glz, 7).
g(@ +d(@)n(x), 7 + ) ~ g(=, 1) +i(@)n(x) Veg(w, ) + hg, (x,7) (17)
=0

Setting the lefthand side equal to zero yields then

s T W, —gT(m7T)
d(x)=h h—ivmg(w,r)ﬁ : (18)

This derivation is outlined in more detail in Breitung (1994), p. 23-5.
For an integral in the form as in eq. (3) the partial derivative with respect to 7 is given

by:

; o) kg-,—('y,T)
P /g(y,f)=of Y Vyg(y,7)] derlw) i
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Now we will try using the divergence theorem (also called Gauss-theorem or Gauss-
Ostrogradsky-theorem) for transforming this surface integral into a domain integral. For
a domain {g(z,7) > 0} and a vector function ®(z) defined on this domain, this theorem

says that:
[ ew nwdsw=[  dvee)d (20)
g(y,7)=0 9(x,7)>0

where 7 is the outward pointing normal as defined before.

This result can be understood easily if the vector function ®(x) is interpreted as the flow
velocity of a fluid. The surface integral gives the total flow out of the domain {g(z,T) > 0},
the domain integral the local changes in the flow. This result is valid even if there are
holes in the domain as shown in figure 3. The integral of the divergence over the domain
by the horizontal stripes gives the flows over the two dashed curves. If the integral of
the divergence of the function is known over the domain with the horizontal stripes and
the flow over one of the curves also we can calculate the flow over the other curve. By

Figure 3: The divergence theorem for domains with holes

choosing an appropriate form for the vector function @ we can ensure that the scalar
product of it with the surface normal on the limit state surface is equal to the function
F(¥)g-(y,7)|Vay(y,7)| " there. This is the case if we set

97(93a7')v:ﬂ§'(ma 'r) . QT(IB:T) 1
Vos@ il D Vg (21

If we now try to apply the divergence theorem by calculating the divergence of the vector
function @(x), we see that the integrand is not defined in the whole integration domain.
The domain is the set where g(x, 7) > (0 and therefore the function will have at least one
maximum there which means that the gradient Vgg(z, 7) vanishes there. The integrand
will be undefined at this maximum point and also at all other points where Vg gl®, 7) = op,
see figure 4. To resolve this problem, first we can try to exclude small neighborhoods of
these points from the integration domain. In Breitung (1994) some results, theorem 22
and corollary 23 are proven for solving this difficulty, but these results are valid only if the
Hessians H, at the points where the gradient vanishes are definite, not as erroneously
stated there if they are regular. One way now would be to exclude all these points where
the gradient is vanishing by introducing small spheres around them which are excluded
from the integration domain.

B(x) = —f(x)
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Vaglz.7) =0,

— =
3 = =] 2
S—————
g ———

Figure 4: Points to be excluded

Another remedy for the problem of the zero gradients is to change the limit state
function so that such zeros can be avoided. Let be given an upper bound for the norm of

the gradient Vgg(z, 1), i.e.
M = max |Vagle, T 29
xes | g(x,7)| =

We define a domain
Sepo = {l2| > Bo, glz,7) > €} (23)

Such a domain is shown in figure 5. This is a subset of the safe domain if §y is chosen not

glz.7) =0

gle,7)=¢

Figure 5: The domain S, g,

too large. Now a new limit state function g* is defined by
g'(®,7) = g(@, 7)exp (lzl?/2) (24)

where & > 0 is a parameter. This function defines the same limit state surface as the
original limit state function g. The gradient of this new limit state function is:

Vazg'(x,7) = explulz|?/2)Vag(z,7) + ug(z, ) exp(ulz|?/2)x
= exp(ulz*/2) (Vzg(z,T) + ng(z, 7)) (25)
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Under which conditions does the gradient Vzg* vanish in the domain S, g,7 It will be
equal to the zero vector if

Vg, 7) + pg(®, 7)2 = On. (26)
A necessary condition for this is:
Vag(x, )| = plgle, 7)|z] (27)
Since we assumed that |x| > fp this condition says:
Vag(x, )| = plg(z, )|Bo (28)
Now, further in the domain of integration we have that |g(z, 7)| > €; this yields then
|Vag(z, 7)| = pefo (29)

Now, since M is an upper bound for the norm of the gradient in S, we find that the
inequality

M > ueby (30)
TS ul (31)
o

has to be fulfilled if there is a point in Sp, . where the gradient is zero. If u is chosen
larger than M/(fe) there are no zeros of the gradient in the domain and the divergence
theorem can be applied to calculate the integral of the divergence over S, 3.

Tor arbitrary e we can integrate over the domain S g, if the parameter p is chosen large
enough in dependence from e. This allows to approximate the integral over the whole
domain {|x| > By, g{x,7) > 0} by extrapolating from these results for € — 0.

The divergence can now be written in a simpler form using the result of Gradshteyn and
Ryzhik (1980), p. 1116, equation 4’. If ¢ is a function and ¥ a vector function R™ — R™
then

div(p - ¥) = (Vo) ' & + ¢ - div(P) (32)

This gives with the definition h(x) = —f(z)g-(z,7)|Vag(z,7)| ™" the following form for
the integrand in eq.(21)

div(hn) = (Vh) 'n + b - div(n) (33)

Now, the divergence of the normal vector is related to the mean curvature H(x) of the
surface at this point by (see for example, exercise 12.18, p. 94 in Thorpe (1979)):

divin) = —(n— 1)H (=) (34)
Therefore:
div(hn) = (VR)'n - h- (n — 1)H(z) (35)

For the case that the safe domain is unbounded, we can get a solution by considering a
second sphere so far outside that the integral over this sphere of the integrand is negligible.
Then we can estimate the integral over the limit state surface between the larger sphere
and a smaller sphere inside using the divergence theorem.

5 CONCLUSIONS
Several methods for computing surface integrals were outlined. The method based on the

divergence theorem allows to compute such integrals for arbitrary shapes by transforming
them to domain integrals.
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ABSTRACT: Most engineering problems are so complex that the solution requires the application
of computer-based numerical algorithms. For research purposes, particularly for algorithmic de-
velopments, interpreted scripting languages are chosen as the primary tools. While this enables
rapid prototyping of the algorithms, it typically leads to substantial loss of computational perfor-
mance as compared to solutions based on compiled languages. Hence, the final versions of the
algorithms are frequently re-coded in a compilable language. This process, however, may involve
quite substantial re-organization of the flow of execution, and possible introduces unwanted errors.
This paper presents an innovative approach to bringing interpreted and compiled languages close
together. Applications to simple structural reliability analysis demonstrate the applicability and
potential of this new approach.

1 INTRODUCTION

1.1 Scripting for engineering application

In many engineering application there is an increasing demand on the availability of tools to incor-
porate unavoidable random variability of loads and system properties into the workflow of struc-
tural analysis. This requires a close relation between the data structures as required for traditional
Finite Element analyses and the stochastics tool required to obtain a suitable statistical description
of the relevant responses. This is readily achievable by using established software development
environments such as e.g. C++. Due to the required compilation process and the possibly code
optimization associated with it, the computational performance can be quite impressive. On the
other hand, the compile-link-cycles do not allow for quick checks how minor algorithmic modifi-
cations or extensions affect the quality of the desired results. This is particularly annoying when
developing larger software projects in a distributed work environment, since each compile-link
must check for potential changes in dependent modules which may lead to substantial delays.

It turns out that such algorithmic modifications or checking steps can be much faster performed
using an interpreted scripting language, albeit at some loss of algorithmic performance. Typically
this is not a real problem because test examples are usually chosen small enough not run into perfor-
mance problems. A fairly thorough discussion on the use of scripting languages in computational
science is given e.g. in (Langtangen 2008).

This paper focuses on the development of a C++ module library for structural, mathematical, and
statistical analysis including graphics named s1angTNG which can be driven through a scripting
language as well. For performance reasons, the scripting language lua (lerusalimschy 2006) was
chosen. Since the flow control of 1ua is not too far from the flow of C++, it is fairly straightforward
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to convert pieces of lua-Code to C++-code carrying out the same task. This is quite useful once
the algorithm is fixed and computational performance must be enhanced.

A previous software project in which the authors were involved (SLang - the Structural Lan-
guage) has been presented in (Bucher, Schorling, and Wall 1995). For a current commercial
software project (optiSLang 2012), the reliability analysis module was developed exactly in this
way, i.e. by implementing and testing the algorithms in s1angTNG. During this test phase, time-
consuming compile-link-cycles could be eliminated. After finalizing the algorithms in script form,
they were subsequently transferred into fast-running C++. ‘

1.2 Motivating example

Suppose you want to generate random samples of a log-normally distributed random variable with
a mean value of 1 and a standard deviation of 0.1. For checking purposes, you want to estimate
mean and standard deviation from the samples. The easy way to answer the question is to fire up
octave (or a commercial equivalent) and run the following script:

$ Monte Carlo simulation of leg-normal random variable
% Define mean value and standard devation

x bar = 1

sigma_x = 0.5

1
2
3
4
5
6| 8 Compute distribution parameters

7 mu = log(x_bar”2/sqrt(x bar”2+sigma x"2))
8 s = sqrt(log(sigma x"2/x bar”2+1))

9
10| ¢ Produce samples

11| samples = lognrnd(mu, s, 1, 100);
12
13| 8 Check statistics

14 mm mean (samples)
15 ss std(samples)

While this procedural code is simple to read and understand, larger program structures in this
style may have unfavorable consequences for C++ developers aiming at high levels of numerical
performance:

e Not compatible with object-oriented paradigm

e Transition from script code to underlying C++ code not straightforward
e Quite difficult to support complex data structures

e Dependence on commercial development

e Portability cannot be controlled

Within s1angTNG, the procedure to carry out Monte Carlo simulation is based on random vari-
able C++ objects. These objects carry information such as mean value and standard deviation, and
they provide their own methods to generate samples. In addition, free functions are utilized to
carry out tasks which are independent of the particular type of random variables such as estimation
of mean values or standard deviations. Details are shown in the following section.

2 CONNECTING COMPILED VERSIONS AND SCRIPT VERSIONS

2.1  Making C++ objects available in Tua

Any scripting language requires some “glue”-code with connects the data structures of the script
interpreter to the data structures of the compiled object library. Establishing and maintaining this
glue code can be substantial effort, particularly is parts of the class interfaces are changing over
time. It is therefore helpful to utilize an automatic binding process. For the software package
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s1angTNG, this binding of the C++ code to lua is performed automatically using swig (SWIG
Documentation 2012). Several tests showed that the wrapper code generated is fast and efficient
for virtually all practical cases. A further advantage of swig is the fact that bindings to other
scripting languages such as py thon can be generated without additional effort.

For a class defining random variables, the following code contains sufficient information for
swig to generate wrapper code and place it into a small library accessible from lua through the
module name stoch. Although the module name can be chosen freely, for convenience it is helpful
to use the name of the C++ namespace In which the class Ranvar resides.

gmodule stoch

${ /* The includes required for the wrapper code: ®/
jinclude "stoch/simulate/ranvar.hpp”

%}

J+ our classes and methods to be wrapped: */
¢include "stoch/simulate/ranvar.hpp”

B R RRE B S FUR N I

Whenever the definition of the class Ranvar changes, the above listed code is passed through swig
thus updating the class for the lua interprefter.

22  Compare C++ code to Lua code

As a very simple case, consider again the Monte Carlo simulation of random variables. Within a
C++ program structure, an object defining the random variable is constructed. The object’s class
must have methods to assign distribution parameters or statistical data, and a method to generate
random samples, The procedure to simulate samples of a log-normally distributed random variable
in shown below for the C++ version:

F?; Create and simulate a log-normally distributed random variable

1

2

3 // Instantiate an object rv of class RanvarLognormal
4 stoch: :RanvarNormal rv();

B

6 // Instantiate an object s of class Matrix
i tmath::Matrix s(2);

8

9 // Assign values to the matrix elements
10 s[0] = 1; s[l] = 0.5;
11

12 /* Use a method of the object rv (the class RanvarLognormal) to
assign statistics */

13 rv.SetStats(s);

14

15 /+ Use a method of the object rv (the class RanvarLognormal) to
generate samples */

16 tmath::Matrix r = rv.Simulate(100);

17

18 // Access values in a loop

19 for (int i=0; i<100; ++i) }

20 printf(”i: ¥d, r %g\n", i, r[i]);

21 }

22

23 // Estimate mean value

24 tmath: :Matrix mean = stoch::statistics::Mean(r);

25

26 // Estimate standard deviation

27 tmath::Matrix std = stoch::statistics::Sigma(r);

This procedure utilizes several obj ect-oriented features of C++. Inthe implementation of the classes
such as RanvarLognormal, features such as inheritance and overloading are used. Note that the
properties of the random variable can conveniently be defined in terms of mean and standard de-
viations (rather than in terms of distribution parameters).

The same procedure is shown below for the script version as implemented in s1angTNG:
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Create and simulate random variables
—— Instantiate an object rv of class RanvarLognormal
rv = stoch.RanvarLognormal ()

—— Instantiate an object s of class Matrix
s = tmath.Matrix(2)

—— Assign values to the matrix elements
8[0] = 1; s[1] = 0.5;

Use a method of the object rv (the class RanvarLognormal) to
assign statistics
rv:SetStats(s)

—- Use a method of the object rv (the class RanvarLognormal) to
generate samples
r = rv:Simulate(100)

—— Access values in a leop
for i=0,99 do
print (71" A Trty (i)
end

—— Estimate mean value
mean = stoch.Mean(r)

- Estimate standard deviation
std = stoch.Sigma(r)

3 RELIABILITY ANALYSIS

3.1

FORM algorithm

As a further example, consider the implementation of the First-Order Reliability Method (FORM).
This method can be cast into the form of an optimization algorithm in which the objective function
is the distance from the origin 3 (or its squared value) in standard Gaussian space, and one single
constraint that the value of the limit state function must be zero (i.e. the solution belongs to the
failure domain and it is located on the boundary). However, for computational reasons (depending
op the optimization algorithm) it might be more suitable to formulate the constraint as an inequality
(i.e. the value of the limit state function must be non-positive). This is appropriate whenever the
origin in standard Gaussian space does not belong to the failure domain. In most applications this
will be true. The algorithm then realizes the following steps:

Transformation to standard Gaussian space (Rosenblatt transform, implemented specifically
for Nataf-model, Nataf 1962; Liu and DerKiureghian 1986). The first step involves a trans-
formation to zero mean. unit variance correlated Gaussian variables ¥; by marginal transfor-

mations:
=0 'Fx(X)]; i=1...n

and the second step a transformation to standardized uncorrelated variables U;:

U=L"Y Cy=1IT

The inverse transformation is then given by:
n
Xi=Fe! |®| Y Lty
k=1

Computation of “design point” u* by solving the constrained optimization problem

u* :u’u — Min; subject to: gx(u)] =0
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Linearization of the limit state function at the design point in standard Gaussian space. In
general, any linear function g(.) in dimension n can be expressed as

n
Wi
g o= ~4+1=0 5)
— S
(=1
The quantities s; can be interpreted geometrically as the intersection distances of the zero
hyperplane g(u) = 0 with the coordinate axis u; (cf. Fig. 1). The minimum distance B of

this hyperplane from the origin can easily be computed by
11
5= ©
%P

By rotating the coordinate system with one axis into the direction from the origin to u* we

immediately obtain
pProb(F) = &(-5) (7N

\?ﬁ

52

Figure 1: Lincarization as utilized in FORM algorithm

The following listing shows a complete implementation of the FORM algorithm in s1angTNG.
It uses the gradient-based optimizer CONMIN (Method of feasible directions, Vanderplaats and
Moses 1973; Vanderplaats 1973).

W~ e Wl

function form()

ops=optimize.Conmin(nvar, 1)

start = tmath.Matrix(nvar)

start:SetZero()

ops:SetDesign(start)

done = false

while (not done) do
done=(ops :Compute()==0)
x = ops:GetDesign()

obj = tmath.Norm(x)"2
ops:SetObjective(obj)

g = limitState(x)
ops:SetConstraints(tmath.Matrix({{g}}))
end
despo_u = ops:GetDesign()
beta = tmath.Norm(despo u)
despo = rcev:FromStandardGauss (despo_u)

end
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The algorithm is constructed such that the optimizer runs in reverse communication mode, i.e. the
optimizer at each step immediately returns to the caller with a new set of design variables and asks
for the value of objective function and constraints for this design. As such, the optimization is
constructed as an infinite loop which is terminated at the optimizer’s direct request for termination.

The same FORM algorithm has then been transferred into C++. The resulting code is shown in
the following listing.

1|void stochTUl::doFORM() {

2 Conmin ops(nvar, 1);

3 tmath::Matrix start(nvar,1l);

4 start.SetZero();

5 ops.SetDesign(start);

6 bool done = false;

7 while (l!done) {

8 done = (ops.Compute()==0);

9 tmath::Matrix x = ops.GetDesign();

10

11 double obj = x.squaredNorm();
12 ops.SetObjective(ob]);

13

14 double g = doLimit(x);

I5 tmath: :Matrix gg(l);

16 ggl[0] = g;

17 ops.SetConstraints(gqg);

18 }

19 despo_u = ops.GetDesign();

20 double beta = despo_u.norm();

21 despo = rvec—>FromStandardGauss(start);
22|}

It is quite apparent that the structure of the algorithm is essentially identical in both languages.
While the basic flow of the algorithm is procedural, it still makes use of object-oriented features.

The C++ code as shown calls the limit state function “doLimit” with the current design as sup-
plied by the optimizer. This call can be used to feed results from a lua-script back into C++. This is
particularly interesting for software which should be user-configurable in essential parts. For the
FORM code as shown, the typical user-configurations are located in

e The set of random variables (distribution types, parameters, correlations)
e The limit state function defining the failure condition

Using the C++interface of the lua interpreter, this can be achieved as shown in the following code
(sanity checks have been removed for clarity)

1{double stochTUl::doLimit(const tmath::Matrix &X) {
2 tmath::Matrix ¥ = rvec—>FromStandardGauss(X);
3| // Get access to limit state function

4 lua_getglobal(L, limit.c_str()):

5 if (!lua_isfunction(L, —1)) return 0;

6| // Push random variables as lua table

7 lua newtable(L);

8 for (unsigned int i=0; i<nvar; i++) {

9

lua_pushnumber(L, i); /* Push the table index */
10 lua_pushnumber(L, ¥Y[i]); /* Push the cell value */
11 lua_rawset(L, —3); /* Stores the pair in the table */
12 }
1.3 int s=lua_pcall(L, 1, 1, 0);
14| // Convert result on the stack to number (g<0 means failure)
15 double g = lua_ tonumber(L, —1);
16 return g;
17(}
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32 SORM algorithm
A second-order correction can be readily obtained using a simple formula developed by Breitung
1992: Breitung 2012. With the aid of this formula, the SORM approximation of the probability of
failure can be expressed as
Prsorm = VdetH* - Pr rorm (8)

in which the matrix H* is defined in terms of the Hessian matrix H and the gradient g of the limit
state function at the design point:

H
i; H=1I- 5
el llell
Note that this formulation requires neither a rotation of the coordinate system nor an eigenvalue
analysis. The implementation in s1angTNG code is shown below.

H*—PTHP+N'N, P=I-N; N=nn'; n= )

Breitung’s formula PR
function breitung(H, 9¢)

local dim = H:Rows()

local n = g/tmath.Norm(g)

local eye = tmath.Identity(dim)

local Hp = eye—H/norm g"2

local N = n*n:Transpose()

local P = eye — N

local Hstar = p:Transpose()*Hp*P + N:Transpose()*N
10 local fac = tmath.Det(Hstar)
11 return math.sgrt(fac)

12| end AAAJ

As a numerical example, consider the problem of a simple linear limit state function g(X1, X2) =
X; — X, containing two random variables X and X». Here X is assumed to be lognormal with
a2 mean value of 1.5 and a standard deviation of 0.3, and X, is exponential with a mean value
of 02. The iteration progress (totally 113 evaluations of the limit state function) is shown in
Fig. 2. The reliability index is 8 =299, the first order approximation to the fajlure probability
is 0.00138 and the second order approximation is 0.00136. The deign point in original space is
x* = [1.191,1.191]7 and in standard Gaussian space it is u* = [—1.066,2.795]".
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Figure 2: Tteration progress of FORM shown in original space (left) and standard Gaussian space (right)

4 CONCLUDING REMARKS

The software project s lang TNG demonstrates that it is fairly easy to establish and maintain a stable
connection between code written in a compiled language (C++) and an interpreted language (1ua).
This enables fast development cycles regarding the implementation of new or modified algorithms
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for stochastic structural analysis using scripting and yet allows for a smooth transition to compiled
versions of these algorithms.

The software is in the public domain (BSD-style license) and can be downloaded from http://
tng.tuxfamily.org. Ready-made binaries for Mac OSX and Windows are available from the

first author’s homepage at Vienna University of Technology http://info.tuwien.ac.at/bucher/
Private/slangTNG.html. AniOS version is available on the Apple App Store.
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ABSTRACT: The purpose of this paper is the development of a new method to analyze the reli-
ability of jarge-scale structures. The structural reliability analysis requires the quantitative eval-
uation of safety and the estimation of factors which have significant influence on damage of the
structure. Howevet, it s difficult to perform the practical reliability analysis of Jarge-scale struc-
tures due to the trade-off between the accuracy and efficiency of calculation. The proposed
method of this paper attempts to obtain samples which involve various failure modes by apply-
ing metaheuristics 10 the estimation of probabilistic space. In the propose method, global and lo-
cal searches with a metaheuristic can perform the efficient sampling based on the occurrence
probability of failure sample. Furthermare, it is expected that the obtained samples are useful for
the calculation of the failure probability of structures. Numerical examples are presented 10

demonstrate the applicability of the proposed method to the structural reliability analysis.

1 INTRODUCTION

The management of lifelines and structures like roads, electricity, gases OF waters is required to
maintain the safety of daily life. However, it is not possible to reinforce all structures by apply-
ing new technologies because there are marny structures which require the management. There-
fore, it is important to Manage structures reasonably by analyzing their reliability like the esti-
mation of components which influence their safety.

In order to analyze the reliability of structure, the calculation of failure probability and the es-
timation of factors which have significant influence on damage of the structure are required.
First, the structural reliability analysis requires the quantitative evaluation of safety. The inten-
sity of force and the strength of materials involve uncertainties. Hence, the failure probability of
structure is calculated by applying a probabilistic model. Next, the estimation of factors which
have significant influence on damage of the structure is required to analyze the reliability of
large-scale structures. This is because large-scale structures involve various failure modes.
However, it is difficult to perform a practical reliability analysis due to a trade-off between the
accuracy and efficiency of calculation (Cho 1993, Watanabe 1999, Matsubara 2008 and Tsuda
1997).

The purpose of this paper is to develop an efficient method to analyze the system reliability of
large-scale structures. Importance Sampling or Subset Method has been used as a powerful tool
to calculate the failure probability of structures with low failure probability. These methods pre-
viously need to estimate components which have large influence on damage of the structure.
Authors have proposed a method to calculate the failure probability by using Markov Chain
Monte Carlo (MCMC) (Gilks et al. 1996, Omori 2001, Iba 2003 and Garnerman 2006). How-
ever, it has been difficult to calculate the failure probability considering various failure modes in
large-scale and complicated structures (Furuta et al. 2010). This is because there are large dif-
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ferences among sampling probabilities of failure modes; if excluding failure modes with a high
sampling probability, the calculated failure probability can not be accurate. In this paper, an at-
tempt is made to propose a new method which can obtain samples which involve various failure
modes by applying metaheuristics to the estimation of probabilistic space. In the propose
method, global and local searches with a metaheuristic can perform the efficient sampling based
on the occurrence probability of failure samples. Furthermore, it is expected that obtained sam-
ples are useful for the calculation of the failure probability of structures. Numerical examples
are presented to demonstrate the applicability of the proposed method to the structural reliability

analysis.

2 SEARCH OF FAILURE SAMPLES USING METAHEURISTICS
2.4 Application of Metaheuristics

In order to analyze the reliability of large-scale structures, it is necessary to evaluate the safety
quantitatively by considering various failure modes. Then, the calculation of failure probability
needs to resolve a trade-off between the efficiency and accuracy of calculation. It is considered
that it becomes easier to overcome this problem if the probabilistic space of problem is clear.
Therefore, in order to estimate the probabilistic space, this study attempts to search for samples
of various failure modes by using Multi-Agent Optimization (MAQ) (Nakatsu et al. 2011). Re-
cently, many researchers focus on the application of metaheuristics to optimization problems.
This is because many metaheuristic methods can perform the collective search to local optimum
and global search to various solutions appropriately. In MAO which is one of metaheuristic
methods, an agent which is a solution candidate searches for the optimum solution autono-
mously. In the search, an agent refers neighbor agent and decides the transition action based on
the relation between them. In this paper, an agent selects an appropriate action from three transi-
tion actions, “approach”, “repulsion” and “restraint”. For example, an agent approaches better
ones by “approach” in order to improve its state. Furthermore, the local change of each agent
causes a big change in a design space; an agent can indirectly use information of design space
obtained by others. Therefore, it is expected that MAO is effective to search for various failure
samples efficiently and accurately.

2.2 Resampling Multi Agent Optimization

In order to estimate the probabilistic space efficiently and accurately, it is effective to search
samples in descending order of occurrence probability. In this paper, re-sampling MAO is pro-
posed in order to perform this search. Procedures of the proposed method are as follows:

Step 1: Initialization of each agent’s sate

Step 2: Action of agents

Step 3: Re-sampling

Step 4: If the search has not satisfied a termination conditions yet, go to Step2. Otherwise, the
search has completed.

The proposed method uses the re-sampling operator and the search history in Steps 2 and 3.
In Step2, an agent is compared to another based on its state. The comparison is performed using
the following evaluation criteria.

Criterion 1: value of limit state function
An agent which does not satisfy any failure criteria is compared by the value of limit state func-

tion calculated by Equation 1.

/()= 3, (x) M

el
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Here, x represents a random variable decided by agent. And, if a problem has m failure criteria,
f(x) represents the j-th failure criterion. If the failure of structure occurs when f{(x) is less than 0,
[sf(x) is minimized.

Criterion 2: occurrence probability
An agent which satisfies failure criteria is compared by the occurrence probability of sample

calculated by Equation 2.

plx)= ﬁX (x,) 2)

i-1

Here, X(x,) represents the probabilistic distribution function of x;. Failure agents are separated
into several groups based on their failure modes or factors. Then, the indexes of agents for com-
parison are decided by their groups. In this paper, the number of search history of group is ap-
plied to the decision. For example, if the number of history of group A is less than group B, an
agent of group A uses the occurrence probability of sample which is the highest among group
A, and another of group B uses the occurrence probability of sample which is the lowest among
group B. Moreover, if two groups have the same number of history, each agent uses the average
of occurrence probability of its group. The high occurrence probability is superior to low in or-
der to search failure samples which have high occurrence probabilities.

The proposed method can search for failure sample by using the evaluation criteria corre-
sponding to a state of each agent respectively with the search history and the re-sampling. The
re-sampling means the initialization of agent’s state. The search history and re-sampling become
useful by combining them. The search history is recorded by separating to groups and an agent
which has the highest occurrence probability is recorded. In the proposed method, the re-
sampling is applied to an agent which referred better search history. Moreover, an agent apply-
ing the re-sampling is added to the search history before its state is initialized. Through these
processes, the evaluation criteria of agents change according to circumstances and then agents
repeat the search and initialization. Agents intensively search around the sample which has the
highest occurrence probability at first. This search increases the number of search history of cer-
tain groups. Hence, failure samples of other groups are better than the group which involves the
highest occurrence probability with running the search. Therefore, it is expected that the pro-
posed method can obtain various failure samples efficiently and accurately by increasing the
number of executing generations.

3 NUMERICAL EXAMPLES

3.1 Application to one-bay and one-story rigid-frame structure

A one-bay and one-story rigid-frame structure shown in Figure 1 is used to demonstrate the ap-
plicability of the proposed method to the search of samples which involve various failure
modes. The failure mechanism of this structure was given in Furuta (1993). The failure of the
structure can be defined by four variables; vertical load P, horizontal load H, full plastic mo-
ment capacity of beam Mp and full plastic moment capacity of column Mc. In the numerical ex-
ample, these factors are dealt with as random variables with the probabilistic distributions given
in Table 1. The structure has 8 failure modes shown in Figure 2. Failure criteria of these modes
are expressed in Equation 3. .
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Z,=4M, —2PL
Z,=2M,+2M,—2PL
Z,=3M,+ M, -2PL

Z, = 4M. —HL \
Z,=2M,+2M, —HL @
Z,= M, +3M, ~HL

Z,=2M,+4M,-2PL—HL
Z,=4M,+2M,—2PL—HL

Here, L represents the length of column. In this numerical example, L is set to 100. The pro-
posed method uses the failure criteria Z; (i=1~~8) as the value of limit state function. In the ap-
plications of the proposed method, the number of agents is set to 100, the number of executing
generations is set to 2,000 and the rate of accepting worse state is set to 20%. Furthermore, the
proposed method is compared to the result of by Monte Carlo simulation with 100 million sam-
ples. The result obtained by Monte Carlo simulation can be considered as the exact solution be-
cause the probabilistic space of the structure in this example is small.

Table 1. Probability density function

Random variable Basic probability distribution
P N(50, 10%)
H N(50, 10%)
Mj M0.5,0.1%)
Me N(1.0,0.2%

Failure samples obtained by the proposed method and the result by Monte Carlo simulation
are shown in Table 2. The column “Failure Modes” represents failure modes involved in the
corresponding sample. For example if Z; and Zg in Equation 3 are lower than () in a sample, the
content of “Failure Modes™ is represented as “7, 8”. In Table 2, samples were separated into
groups based on their satisfied failure criteria shown in Equation 1. Then, samples which have
the highest occurrence probability among each group were ranked based on the value of their
occurrence probability. Therefore, samples of top 15 groups are shown in Table 2. The result of
comparison demonstrated that the proposed method had the sampling accuracy equivalent fo the
exact solution. This is because there was no much difference among samples obtained by the
proposed method and Monte Carlo simulation. In addition, in this study, it was verified that the
number of groups of failure samples increases with the increase of the number of executing
generations. In the proposed method, agents intensively search for samples with high occurrence
probabilities at first. Then, each agent changes search areas based on the search history. In these
processes, agents repeat intensive and global searches by using the re-sampling operator. There-
fore, the proposed method could obtain various failure samples based on their occurrence prob-
abilities.

Furthermore, the proposed method could obtain samples of top 15 groups equivalent to the
results shown in Table 2 with 60 thousand samples (the number of agents was set to 40 and the
number of executing generation was set to 1,500). On the other hand, Monte Carlo simulation
required 1.5 million samples in order to obtain the equivalent accuracy. This is because the pro-
posed method can search for various samples efficiently with the re-sampling operator and the
search history. Through the numerical example, the applicability of the proposed method to the
structural reliability analysis was confirmed.
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Table 2. Comparison to Monte Carlo method

| Rank Monte Carlo method Rank Proposed method Failure modes
1 2.117.E-03 1 2.047E-03 8
2 2.113.E-03 2 1.860E-03 7
3 1.836.E-03 3 1.756E-03 7,8
4 1.036.E-03 4 9.845E-04 4,7
5 1.034.E-03 6 9.539E-D4 1,8
6 1.033.E-03 7 9.486E-04 1
T 1.028.E-03 5 9.750E-04 4
8 6.931.E-04 8 6.450E-04 4,7,8
9 6.876.E-04 9 5.752E-04 1,7, 8
10 3.541.E-04 13 3.158E-04 4,6,7,8
11 3.539.E-04 10 3.446E-04 1,3,7,8
12 3.524.E-04 12 3.401E-04 4,6,7
13 3.512.E-04 11 3.438E-04 1,38
14 1.950.E-04 14 1.896E-04 1.2.3:7,8
15 1.948.E-04 15 1.881E-04 2,78
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3.2 Application to lifeline network

In order to verify the effectiveness to the reliability analysis of large-scale structures, the pro-
posed method is applied to a network model with 17 components (8 nodes and 9 links) shown in
Figure 3. In this paper, the reliability analysis of the network model is performed according to
Furuta et al. (2010). In the model of Figure 3, water distribution capacity of each component is
given in Table 3. Here the external force F is a random variable distributed according to
N(3.0, 0.3%). And, there is no correlation among components and random variables of all com-
ponents are independently distributed. In the application of the proposed method, the number of
agents is set to 200, the number of executing generations is set to 3,000 and the rate of accepting
worse state is set to 20%.

First, the effectiveness of the search of failure samples is demonstrated, in which the results
obtained by the proposed method and Monte Carlo simulation are compared as shown in Table
4. In this example, Monte Carlo simulation used 100 million samples. In Table 4, “Failure
mode” represents failure components involved in the mode. In these results, the obtained sam-
ples were separated into groups according to their failure modes. Monte Carlo method could ob-
tain only 8 failure modes. On the other hand, the proposed method could obtain more various
failure modes and more samples with higher occurrence probabilities than Monte Carlo method.
Therefore, it is expected that the proposed method is effective for the search of failure samples
in the reliability analysis of large-scale structures.

Next, the availability of samples obtained by the proposed method in the reliability analysis
is examined, in which the obtained samples were applied to the calculation of failure probability
of the network model shown in Figure 3. The exact solution of failure probability is 2.00E-4. In
this paper, the failure probability was calculated by applying Importance Sampling, and samples
obtained by the proposed method were used as the design points. Moreover, the proposed
method was compared to MCMC Importance Sampling and Monte Carlo method with one mil-
lion samples. The results obtained by 10 trials of each method are shown in Figures 4 and 5. In
Figure 4, it was seen that the proposed method and MCMC Importance Sampling could calcu-
late more accurate failure probabilities than Monte Carlo method. Figure 5 showed that the ac-
curacy of MCMC Importance Sampling was superior to the proposed method. However, the
study by Furuta et al. (2010) demonstrated that it was difficult for MCMC Importance Sampling
to obtain samples which involved various failure modes. On the other hand, the application re-
sult shown in Table 3 demonstrated that the proposed method could obtain various failure
modes in the network model. Therefore, the applicability and effectiveness of the proposed
method to the reliability analysis of large-scale structure was confirmed.

Figure 3: Network model with 17 components
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Table 3. Distribution capacities of components

Node Link
Component Capacny Component Capacity

Ny MO8, 0.87) Ly N{7.0, 1L.O%)
N N(6.B,0.87) L Ni6.5,0.7%)
N; N(6.8,0.87) Ly NI6.5, 0.7
N, N(6.8,0.8%) La N(T.0,1.0°)
Ns N(7.0,1.07) Le N(T.0, 1.07)
N N(T.0, 1.0%) Lo N(T.0.1.07)
N» N6.9,0.97) L N8O, 151
N N(7.0. L0 Ls N(6.0, 0.5

Le N(T.0, 1.07)

Table 4. Failure probabilities of failure modes

Monte Carlo method Proposed method

Failure mode Rank Probability Rank Probability
N5 1 7.63E-11 1 2.22E-10

N8 2 6.32 E-11 3 2.20E-13

L5 3 6.26 E-11 2 1.40E-10

N4 4 1.39 E-12 4 4.46 E-12

N1 5 1.20 E-12 5 60.9 E-12
N6,L.7 6 7.73 E-15 7 8.12 E-15
N6,L7 7 3.32E-16 16 2.54 E-13
L6,L9 8 1.10E-19 13 1.02 E-16
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4 CONCLUSIONS

In order to analyze the reliability of large-scale structure accurately and efficiently, in this paper,
an attempt was made to propose a new method which can obtain samples which involve various
failure modes by applying metaheuristics to the estimation of probabilistic space of problem.
Through numerical examples, the applicability and effectiveness of the proposed method were
demonstrated.

In order to estimate the probabilistic space, the proposed method attempted to search for
samples of various failure modes based on their occurrence probabilities. In the proposed
method, MAQO which is one of metaheuristics uses the re-sampling operator and search history.
Hence, agents repeat the search of failure samples and the initialization of their state, Moreover,
the evaluation criteria change based on the search history. These additions enable MAO to ob-
tain samples of various failure samples with multiple modes.

In numerical examples using simple and large-scale structures, the proposed method could
obtain samples of various failure modes. The obtained samples had high occurrence probabili-
ties in the probabilistic space of problem. In additions, the comparison to Monte Carlo simula-
tion demonstrated that the proposed method could obtain various failure samples efficiently and
accurately. Furthermore, samples obtained by the proposed method were useful to calculate the
failure probability.

In order to sustain and improve the safety of structures, the reasonable structural management
is required. Hence, a method of structural reliability analysis which can perform the quantitative
evaluation of safety and the estimation of factors which have significant influence on damage of
the structure is important. Therefore, it is expected that the proposed method is cffective for the
realization of reasonable structural management.

As the future works of this study, the proposed method requires additional verifications of the
effectiveness to more larger or complicated structures.
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ABSTRACT: Engineers designing structures must work with incomplete and imperfect models.
In standard design situations, safety provisions in codes implicitly account for these uncertain-
ties. However, for more advanced design procedures that are not covered by the code, e.g.
when dealing with non-linear dynamic problems, the engineer must explicitly address this un-
certainty. A special case of uncertainty arises when time domain analysis is applied for deter-
mining the extreme response under wind loading: The statistical uncertainty due to a limited du-
ration of the dynamic simulation. In this paper, we discuss this uncertainty and propose a
reliability-based approach to account for this uncertainty in a semi-probabilistic design format.
A quantitative relation between the computational efforts made in design and the additional
safety required is established. Numerical investigations are performed for large membrane struc-
tures analyzed by means of Fluide Structure Interaction (FSI) simulation.

1 INTRODUCTION

Engineers designing structures must work with incomplete and imperfect models (Ditlevsen and
Madsen 1996; Der Kiureghian and Ditlevsen 2009). In standard design situations, safety provi-
sions in codes (e.g. Eurocode 0) implicitly account for these uncertainties. However, for more
advanced design procedures that are not covered by the code, e.g. when dealing with non-linear
dynamic problems, the engineer must explicitly address this uncertainty. A special case of mod-
el uncertainty arises when time domain analysis is applied for determining the extreme response
under wind loading: The statistical uncertainty due to a limited duration of the dynamic simula-
tion. As will be shown in this paper, this uncertainty can be considerable for realistic design sit-
uations.

In Eurocode 0, reference to this type of uncertainty is made in paragraph 5.2, which deals
with design assisted by testing: “The statistical uncertainty due to a limited number of test re-
sults shall be taken into account.” The informative annex D of Eurocode 0 provides some addi-
tional guidance on how to deal with the uncertainty, but specific recommendations are made on-
ly for the case of resistance variables that have the Normal or Lognormal distribution. (The
recommendations are based on, among others, work by Rackwitz (1983).) No detailed guidance
is provided for the case where design values for load actions or load effects are determined
based on limited samples, e.g. from a time series that is obtained either by numerical simulation
or experiments (e.g. wind tunnel testing). To propose a criterion and a procedure for dealing
with the statistical uncertainty in these cases is the goal of the present paper.

We discuss the uncertainty and propose a reliability-based approach to account for it in a
semi-probabilistic design format. A quantitative relation between the computational efforts
made in design and the additional safety required is established. Numerical investigations are
performed for large membrane structures analyzed by means of Fluide Structure Interaction
(FSI) simulation (Michalski et al. 2011).
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2 DETERMINING THE EXTREME RESPONSE OF MEMBRANE STRUCTURES
SUBJECT TO WIND LOADS

2.1 Structural analysis

The reliability of membrane structures (e.g. Figure 1) is commonly determined by extreme wind
loads due to their large surface-to-mass ratio and their flexibility. Particularly transient wind
load combined with wide spans and low pre-stress levels of the membrane can lead to dynamic
amplifications of the structural response. The assessment of dynamic response of membrane
structures is highly complex due to their special load carrying behavior, their material properties
and their distinct structural interaction with flow induced effects.

Figure 1. Medina Piazza Shading Project, 26m Umbrellas, Medina, Saudi Arabia, SL-Rasch GmbH.

Common methods in wind engineering practice, such as small scale wind tunnel experiments,
do not fully cover non-linear structural behavior, contact interaction between membrane and
structural elements and the interaction of the flow field with the structural response. Therefore,
numerical tools — developed and validated during several scientific and applied engineering
studies (Michalski 2010, Michalski et al. 2011) — are proposed to overcome limitations of exist-
ing structural analysis approaches and are used for structural engineering.

2.2 Computational wind engineering methodology

The complete simulation methodology, consisting of the numerical wind flow simulation and
the fluid—structure coupling simulation, is summarized in Fig. 2. With this simulation approach
it is possible to examine all aspects of wind-loaded membrane structures. The applied fluid
structure interaction (FST) simulation methodology allows the realistic description of the nonlin-
ear structural behavior at the real scale, which is especially important in the case of textile struc-
tures, and of the stochastic wind excitation. The analysis is performed in time-domain.

Computationzl Wind Enginearing Methodalagy

oressurerngzan

Wind load simulation Structural respanse simuiaton

cED [ csn F

Form
F s rustural analysi t
Wing % anaiysis Stuctural analysis fding

gensration PAM Flow PAN Crash

LigA

Figure 2. Computational Wind Engineering Methodology using a fully partitioned FSI approach.
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The unknown parameters of the flow (velocity and pressure) as well as the structure (forces and
deformations) are calculated including the fluid—structure coupling conditions. It should be not-
ed that for wind load assessments by applying CFD techniques, an accurate time dependent
analysis is required. Therefore turbulent flow is modeled by large eddy simulation (LES) based
on the Smagorinsky subgrid scale (§GS) model. It is used because it enables the prediction of
peak pressures and maximum/minimum structural response in the FSI context.
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Figure 3. Time domain FSI analysis of large umbrella structures (left: CFD/LES pressure contour results,
right: structural response results) ‘

2.3 Design requirement

The load-and-resistance-factor-design (LRFD) principle implemented in Eurocode O requires
that structural elements comply with the following design requirement:

> )
Yr ¢

Wherein:

Ry.: characteristic value of the capacity R;

Yr: partial safety factor for the capacity R; and

E;: design value of the load effect.
In the standard Eurocode approach, the design load effect E; is determined as a function of the
design wind action on the structure Qy = Qy¥g, with @y being the characteristic wind action
and y, the partial safety factor for wind loads. However, due to the coupling of the actions to
the structural response (deformations), such an approach is not meaningful for the considered
structures. Instead, the non-linear coupled structural analysis is performed for a characteristic
wind field V;, and characteristic weight Gy, resulting in a characteristic load effect Ey. The de-
sign load effect is then determined as

Eq = Exvo 2

The characteristic wind field V;, is defined based on the 50 year wind speed (corresponding to a
98% quantile in of the annual maximum wind speed). The characteristic load effect £y is de-
fined as the expected value of the maximum response during a 10 min time period in which the
structure is subjected to Vy,.

Note that for the considered application (Sec. 2.1) this approach is on the conservative side
when compared to the standard Eurocode procedure of determining the response as a function of
the design action Q4. In the static or quasi-static analysis of Eurocode 0, the characteristic action
), acting on the structure is proportional to the square of the wind velocity v2. If the load effect
was a linear function of »2, it would be irrelevant whether the safety factor y,) were introduced
at the level of the load action or the level of the load effect. For the considered application, it
was found by numerical checks that the load effects increase under-proportional to v*. Introduc-
ing the safety factor yg at the level of the load effect thus leads to larger design loads and is
conservative.
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2.4 Extreme value analysis to determine the characteristic load effect

For a given characteristic wind field Vy,, the FSI analysis results in a time series of the relevant
load effect with length T, an example of which is provided in Fig. 4. This time series x(t) rep-
resents one realization of the stochastic process X(t) of the load effect resulting from the con-
sidered wind field V.

Load effect X(t) [Nm]

[ 200 400 500 800 1000 1200 1400 1600 1800
Time t[s]

Figure 4. Time series of a load effect (resulting moment) obtained from the FSI analysis, with peaks iden-
tified using the declustering algorithm of Tawn (1988).

Through a series of tests, it is found that X(t) can be considered a stationary process. In addi-
tion, it is assumed to be ergodic and have limited long-range dependence at extremal levels.
Let Y denote the maximum of X(t) during a 10 min period:

Y = max X(0: 10min) 3)

The distribution of ¥ can be estimated from a time series x(¢t) as in Fig. 4 using extreme value
theory (Coles 2007). Both the Peak-over-threshold (POT) and the block-maxima approach are
implemented and results are compared. For brevity, only the latter is reported here. With the
block-maxima approach, the data x(t) is separated in blocks of length b. A value b = 60 s is
used. The set of maximum observed values in each block x,, 4, ..., Xy, , is identified and a Gen-
eralized Extreme Value (GEV) distribution is fitted to this data using a Maximum Likelihood
Estimator (MLE). The GEV distribution is:
7
X —E€ a
Fy,(;8) = exp{— 1+Ll] e €]
a B

where 8 = [a; f5; €] are the parameters of the distribution (scale, shape and location parameter,
respectively) . This is the distribution of X,,,, the maxima in each block of duration b. The dis-
tribution of Y, the maxima in 10 min, is
10min)

b

Fy(y;0) = [Fy, (v; e)](

T
10mi -'F
- - (22 20—
1 (5)

10mimP\ \] #
1 a(y—(e_g+%( min) )) )
— — > _
- * a(lOmin)B S

b

68




[

, i i 10min)#
This corresponds to a GEV distribution with parameters a;p =@ (T) , Bip=F and
o & (10min B
€10=€"% E( b ) '
For given parameter values 0, the characteristic value of the load effect £, is defined as the
expected value of the maximum of X(t) in a 10 min period, i.c. the expected value of ¥:

E(8) = E(Y10)
. 1~ Fr(y; 8)]dy

B
a 6
= €10+ [1(1 = Bp) — 1] ©)
Bio
L@ (10m'm)'8 HL =By -1
=€ —_— —_ —_ .
1\ :
The third identity follows from the fact that E, has the GEV distribution with parameters ayg,
P10 and €4¢.
The MLE of 8 is computed from the observed block maxima Xy, 1, ..., Xmn by:
n
By = max1(0) = max ) In fy,, (xi;0) ()

i=1

Figure 5a shows the empirical and the fitted probability distribution of Xp, for the extremes of
the time series shown in Fig. 4. The probability distribution of Y with the fitted parameters
Oy is shown in Fig. 5b.

a) Block maxima X | b) Maxima in 10 min time period Y
1 1
-—— observed
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o1 — fitted
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1
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Figure 5. (a) Empirical and fitted probability distribution of block maxima X, obtained from the time se-
ries in Fig. 4; (b) corresponding probability distribution of ¥, the maximum load effect in a 10 min peri-

od.

2.5 Statistical uncertainty

A Bayesian estimate of 8 is applied for representing the statistical uncertainty associated with
the limited sample size. We use the asymptotic Normal approximation of the likelihood. Using a
non-information prior distribution, this leads to a multivariate Normal posterior distribution of 8
given the data X, 1, «..s Xmon!
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0,1, ) X ~ MVN(Bpyg, Cop)- (8)

where the covariance matrix Cgg is the inverse of the observed Fisher information matrix I
evaluated at the MLE (Coles 2007):

Coo = To(BmLe) ™t )]

The observed Fisher information matrix I5(8) is equal to the Hessian of the log-likelihood [(8)
with respect to the parameters 0.
For the limiting case of an infinite time series, Cqg is zero and 0 is deterministically equal to

OmLE-
Based on the posterior distribution of 8, the posterior probability density function of the char-

acteristic value Ey,, fz , can be determined. Due to the non-linearity of the function E} (@), Eq.
(6), the distribution fE; can only be determined numerically. Here, Monte Carlo Simulation
(MCS) is used for this purpose. Alternatively, numerical integration or a first-order approxima-
tion can be applied. The first-order approximation results in a Normal distribution with mean
and variance as follows:

ﬁEk = Ex (OpLE), (10)

6%, = VE{ CooVEy, (11)
with
E,(8) OE,(8) 0E.(8)]"

12
2a ' op  oc | (12)

VEk =

evaluated at 8 = By .

For illustrative purposes, in Fig. 6 the resulting posterior distribution of E), is shown for dif-
ferent lengths T of the simulated time series x(t). This distribution is obtained with the data of
Fig. 4. This illustrates the effect of T on the statistical uncertainty in the design parameter. As
expected, the posterior variance of Ej is decreasing with increasing length of the time series.
Furthermore, it is observed that the first-order approximation is underestimating the true varia-
bility of Ej, in particular for shorter time series.
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Figure 6. Example of Fg,, the posterior distribution of the characteristic load effect Ey, for different
lengths T of the simulated time series X (t). Results as obtained with MCS and with a first-order approx-
imation are shown.
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What is the interpretation of fz,and what is its relevance in the design? For the given wind
scenario, there is one true value of Ey, which — under the assumption of ergodicity — could be
determined if a time series x(t) of infinite duration T = co were available. In practice, due to a
limited duration T, it is only possible to determine a distribution of Ej as shown above. If the
MLE estimate £, (8ypg) were employed, there is a large probability (in the order of 50%) that
the true value of E, is underestimated, leading to a non-conservative design. For this reason, in-
stead of E, (8ypg) an upper quantile value of the distribution fE’L should be used in design. Let
Eyq denote this upper quantile. But which is the appropriate quantile level g to be applied? This
question will be addressed in the next section.

3 RELIABILITY-BASED DETERMINATION OF QUANTILES FOR DESIGN

3.1 Quantile value of E,

To account for the statistical uncertainty described in Section 2.5, upper quantile values of fg,
must be used in the design. However, no guidance on the appropriate quantile level g is found in
Eurocode or other literature. Therefore, the following criterion is proposed to determine the ap-
propriate quantile level:

The level of the upper quantile is selected so that the reliability of a design based on a limited
time series x(t) of duration T is equal to the reliability of a design based on an infinite time se-
ries (when no statistical uncertainty is present).

Because structural analyses are only performed for a characteristic wind field Vy, it is not
possible to actually compute the reliability. Instead, the reliability conditional on the characteris-
tic wind field V is computed and the above criterion is applied to this conditional reliability.
(Note that we make no assessment of the appropriateness of the characteristic wind field.) Let
B denote this conditional reliability index. To make explicit the dependence on the computa-
tion, let ,G’kT‘q denote the conditional reliability index obtained from a design based on a limited
time series of length T and using an upper quantile level q. The goal is thus to find a value of g
that fulfills the following condition:

(Tig) _ ploo)
S = (13)

ﬁ,&m) is the conditional reliability index obtained from a design Pased on infinite time series. In
the following, the probabilistic model and the computation of ﬁ;g D and ,8;500) are presented.

3.2 Probabilistic model

E is the maximum value of the load effect occurring during the 10min duration of the repre-
sentative wind scenario. It is modeled as:

E=Y Zn, (14)

with Z,,, being the model error of the structural (FSI) analysis. The distribution of Z,, is esti-
mated from previous experimental validations of the FSL, as reported in Michalski et al. (2011),
as the Lognormal distribution with mean value 1 and standard deviation 0.25. To assess the sen-
sitivity of the final results with respect to this parameter, alternative choices were investigated,
which are not reported here.

For given parameters 8, ¥ has the probability distribution Fy(y; 8) according to Eq. (5). Be-
cause 8 itself is a random variable with posterior distribution fy'(8) according to Eq. (8), Y is
described by its predictive distribution, defined as

Ew:fnmmﬁwm. (15)

e
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This integral is evaluated numerically by means of MCS. For the reference case (with T = ),
0 = Oy g deterministically, and the predictive distribution reduces to

Fr () = Fy(y; BmLe). (16)

The capacity R is modeled by a Lognormal distribution with coefficient of variation 0.1. The
mean value of R is determined through the design criterion as follows.

3.3 Design criterion
The design criterion is given by Egs. (1) and (2) as
Ry
Yr
Replacing Ey by its quantile value Ej,; and assuming a design at the limit of the admissible do-
main, we obtain
Ri = ExqYqVr- (18)
Since the characteristic value of the capacity Ry, is defined as the 5% quantile, the mean value of
R is obtained from the condition
FR_I(O.OS) = EquQYR- (19)

Here, Fi! is the inverse CDF of R. As evident from Egs. (18) and (19), the characteristic value
of R, and consequently its mean value, are a function of the selected quantile g.

3.4 Reliability assessment

The reliability associated with a given quantile value q can be determined by means of the clas-
sical structural reliability methods. The load effect E is given by Eq. (14) and it follows that the
limit state function describing failure is

gRY,Z)=R~-YZ,. (20)
Here, MCS is applied for determining the probability of failure
Pr(F) =Pr[g(R,Y,Z,,) < 0] 21)
and the corresponding reliability index
B = o7 [Pr(F)) (22)

with @~ being the inverse of the standard Normal cumulative probability function.

4 NUMERICAL INVESTIGATIONS

Numerical investigations are carried out for 18 load effects and different lengths of simulation
T. Because only one simulation of total length T = 30 min is available for each load effect, the
shorter time series are obtained by taking parts of these simulations.

The results for the reference solutions ,ka are obtained by applying the MLE and hypotheti-
cally assuming that the covariance of the estimator is zero. For the time series shown in Fig. 2,
the resulting values of the characteristic load effect Ej and the corresponding reliability index-
es are presented in Fig. 5. The reference reliability index g}gw) is also presented. For this case,
the necessary quantile to achieve the reference reliability 5, ) = 2.6is0.9.
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Figure 7. Characteristic value of the load effect and corresponding conditional reliability index ,B,Eq'mmi")

as a function of the selected quantile value g, for a 10 min time series taken from the one in Fig. 2. The
reference reliability index ﬁ,Em = 2.6 is the value that would be obtained with an infinite time series. The
required minimum quantile for this case is 0.9.

A summary of the resulting required quantiles as calculated for the 18 load effects and different
durations of the FSI simulation is presented in Fig. 6. The computations show that the necessary
quantile q is a function of the length of the simulation: the necessary q decreases with increas-
ing length of the time series.
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Figure 8. Required quantile values calculated for different load effects and different durations of FST sim-
ulation. The dashed line shows the trend.

The resulting conditional reliability index is in the range 2.4 — 2.7. It is noted that this value is
low. However, the reliability of structures subject to predominantly wind load designed accord-
ing to Eurocode is known to be lower than for structures subject to other loads (JCSS 1996).

Based on the results of this study, it was decided to apply a quantile value of 0.95 and 30 min
time series for the design, which is on the conservative side.
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5 SUMMARY AND CONCLUSION

Due to computational limitations, the length of time-domain FSI simulations is limited. When
estimating the maximum load effect, the uncertainty arising from the limited duration of the
load effect should be taken into account. In this paper, we present an engineering approach to
dealing with this problem: The statistical uncertainty arising from the limited data is estimated
and quantified using a Bayesian approach. It is then proposed to use a quantile value with re-
spect to this uncertainty in the design. The necessary quantile value of the maximum load effect
is determined by requiring that the reliability achieved with this quantile value is equal to the re-
liability that would be achieved when complete information was available (corresponding to an
infinite time series). This quantile value must be applied on top of other safety factors and char-
acteristic values; in particular, it does not address the uncertainty in determining the characteris-
tic wind field. The approach is applicable to other problems involving the estimation of extreme
actions and load effects on structures based on limited time series, whether they arise from nu-
merical computations or from observations.
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Adaptive importance sampling using nonparametric density
function
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ABSTRACT: This paper presents a new adaptive importance sampling method that finds a
near-optimal sampling density by minimizing Kullback-Leibler cross entropy, i.e. a measure of
the difference between the absolute best sampling density and the importance sampling density.
In particular, the proposed method employs a nonparametric multimodal probability density
model called Gaussian mixture as the importance sampling density in order to fit the complex
shape of the best sampling density through very few rounds of pre-sampling. The final impor-
tance sampling using the near-optimal density requires far less samples than crude Monte Carlo
simulation or cross-entropy-based importance sampling employing a unimodal density function
requires for achieving the desired level of convergence. The proposed method is applicable to
various component and system reliability problems that have complex limit-state surfaces in-
cluding those with multiple important regions. The parameters of the converged Gaussian mix-
ture can be used to identify important regions and quantify their relative importance.

1 INTRODUCTION

The most commonly used sampling method, due to its straightforward application, is crude
Monte Carlo Simulation. Given enough time, this method finds the “exact” failure probability;
however, the computational cost may be exceedingly large, especially for low-probability
events or those described by computationally expensive limit state functions. To remedy this is-
sue, an importance sampling (IS) approach is often used. For a successful implementation of IS,
one must specify an alternative sampling density that reduces the variability of the sampling es-
timate. One of the simplest of such densities is a multivariate Gaussian density whose mean is
located near the “design point” (Fujita & Rackwitz 1988, Melchers 1989) found from a structur-
al reliability analysis by the first-order reliability method (FORM). However, due to the com-
plexity of the failure surface in the search space, multiple or competing design points, or various
other issues, IS employing the design point found in FORM analysis may not converge to accu-
rate failure probabilities. Moreover, there have been attempts to determine IS density functions
for specific types of system reliability problems, but there exist no general procedure that is ap-
plicable to a variety of system reliability problems.

To address some of these issues, several adaptive IS procedures have been suggested in past
rescarch. Bucher (1988) proposed an adaptive IS approach in which the sampling density is up-
dated based on statistical moments estimated by pre-samples. Ang et al. (1991) used an IS den-
sity found by constructing kernel models based on samples generated in the failure domain.
Some have sought to model the limit state function using various approximations. Ching and
Hsiegh (2005) used subset simulations coupled with a maximum entropy optimization to find a
local approximation of a limit state for given design values. The maximum entropy approach se-
lects a probability density function (PDF) that maximizes its entropy subject to moment con-
straints from sample data. Dubourg et al. (2011) used a variance minimizing IS with a surrogate
meta-model based on a Kriging procedure. Grooteman (2011) used an adaptive directional IS
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approach to improve efficiency on previous directional IS approaches by finding the most im-
portant directions and sampling the rest using a response surface. Several other methods have
been suggested, but most of these fall within similar veins of those described earlier.

One possible adaptive IS approach is to minimize the Kullback-Leibler cross entropy (CE)
(Rubinstein & Kroese 2004). In this methodology, CE measures the “distance” between the best
sampling density and the current adaptive IS density. This CE approach is largely absent from
general use in the field of structural reliability. This paper presents a new adaptive IS approach
recently developed by the authors, which improves the existing CE approach by fitting the com-
plex shape of the best sampling density more effectively by use of a nonparametric multimodal
density model. As an example of a nonparametric distribution, the Gaussian mixture is used.
The developed method updates the IS density described by a Gaussian mixture model through a
few rounds of pre-sampling so that the CE with respect to the best IS density is minimized. This
paper first summarizes the existing CE-based adaptive importance sampling approach. Then, the
proposed adaptive IS procedure using Gaussian mixture will be explained. Several numerical
examples of component and system reliability problems will be presented to demonstrate the
performance of the proposed method.

2 CROSS ENTROPY BASED ADAPTIVE IMPORTANCE SAMPLING

Suppose one aims to perform a numerical integration
1, = [ H(®) f (x; u)dx (1)

where H(x) is a function to be integrated in the space of the random variables x, which follows
the joint PDF with parameter u, i.e. f{x;u). For example, when the probability of the event
2(x)=<0 is of concern for structural reliability analysis, H(x) becomes fy,y<o; Where [ is the indi-
cator function with binary outcomes, i.e. “1” for the occurrence of the event, and “0” otherwise.
Polynomial functions of x can be used as H(x) for computing statistical moments. The integral
in Equation 1 can be evaluated more efficiently by introducing an alternative sampling density
h(x) with the parameter v, that is,

H(x) f(x;u) H(x) f(x;u) H(x)f(x;u)
&= Il: h(x; V) }h( =R [ h(x;v) :l_ Ng h(x,;v) @

where E,[-] is the mathematical expectation with respect to the density A(x;v), and x;, i =I,....N
are pre-samples generated from A(x;v). The performance of IS is optimal when the variance of
the estimate is minimized. The optimal IS density p*(x) is derived as (Rubinstein 1981).

[H ()] (x;0) -
JIH®)| £ (x;u)dx

This optimal sampling density cannot be used as the IS density because the denominator in Eq-
uation 3 is practically equivalent to computing /, in Equation 1, and exactly the same if H(x) has
non-negative sign everywhere. However, one can still improve the efficiency by finding a
“near-optimal” IS density whose shape is similar to that of p (x) in Equation 3.

One can find a near-optimal IS density by minimizing a measure of the difference between the
best IS density p'(x) and the current IS density A(x;v), such as the Kullback-Leibler CE

D(p (), h(xs v) = [ p' (0)In p" (s~ p () In h(x; V) @

Rubmstcm & Kroese (2004) proposed to identify an IS density function whose shape is similar to

p (x) in Equation 3 by finding the values of the parameter v that minimizes the CE in Equation 4.
Smce the IS density parameter v appears in the second term only, one can find a near-optimal IS
density A(x;v) by maximizing the second integral in Equation 4. For structural reliability analysis,
it is noted that FI(x) is non-negative, and thus from Equation 3, p*(x) is proportional to H(x)f(x;u).
Therefore, substituting this to Equation 4, one finds

¥ (@)=
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argmin, D(p * (x), 4(x; v)) = arg max,, _[H (x)In A(x; v) f(x; u)dx (&)

For purposes of evaluating the expectation in Equation 5 as a function of the parameter v, another
sampling density h(x;w) is introduced, i.e.

argmin, D( p (x),h(x; v)) = arg max jH (x)In A(x; v) i—é:—:; h(x; w)dx ©

=argmax E [H(x)Inh(x; V)V (x;u,w)]

where E,[-] denotes the mathematical expectation with respect to the density function A(x;w), and
W(x;u,w) is the likelihood ratio f(x;u)/h(x;w). Estimating the expectation in Equation 6 by the IS
density A(x;w), one can obtain a near-optimal density approximately by

argmin, D(p’(x), h(X; v)) = arg max , %iH(xi)h] (X VW (x;;0, W) @)

where x; is the ith sample generated using the density A(x;w), /=1,...,N. In most applications, the
function in Equation 7 is concave and differentiable with respect to v (Rubinstein & Kroese,
2004); therefore, the values of the parameters v that make /4(x;v) a near-optimal density can be ob-
tained by setting the gradient of Equation 7 to be zero, i.c.

N
%ZH(KE)W(Xr,;u,w)Vv Inh(x,;;v)=0 (8
=1 s
It is noted that if a member of the exponential family of distributions is used for A(x;v), the applied
logarithm ensures that each parameter has an explicit updating rule. Rubinstein & Kroese (2004)
derived such explicit updating rules for selected distribution models so that one can find a near-
optimal density function by a few rounds of pre-sampling, and then perform the final IS until the
target level of convergence is achieved.

3 CE-BASED ADAPTIVE IMPORTANCE SAMPLING USING GAUSSIAN MIXTURE

. The aforementioned cross-entropy-based adaptive importance sampling (CE-AIS) by Rubinstein
& Kroese (2004) uses parametric uni-modal distribution models for the IS density h(x;v), and as-
sumes statistical independence between random variables so that the parameters of the marginal
PDFs in A(x;v) can be updated individually. When a structural reliability problem has multiple de-
sign points or complex failure domains, such IS density models may not be flexible enough to fit
the complex shape and orientation of the best IS density in Equation 3. Therefore, in this paper, a
nonparametric multi-modal density model called the Gaussian mixture is implemented into the
CE-AIS approach, and updating rules are derived to obtain optimal parameters of the Gaussian
mixture through a few rounds of pre-sampling.

3.1 Gaussian mixture distribution model

Suppose the outcome of a random vector X is determined by one of the K multivariate Gaussian
distributions selected each time according to their pre-specified relative likelihoods. This ran-
dom selection of a Gaussian density can be described by use of a “latent variable”
2={21,7,...,Zx }, which is a K-dimensional binary random variable array where only one entry z,
can be 1 at a given time to describe the event that the kth density is selected. Let m; denote the
probability that the kth density is selected at a given time, that is, P(z=1)=m, where
t+...+7m=1, and 0< mx <I. Then, the joint PDF of x is derived as (Bishop 2006)

POO=h(xv) =Y mN (x| 1,2 ©)

where N(x|u,Zy) is the joint PDF of the Gaussian distribution with mean vector p and cova-
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riance matrix Z;, &=1,...,K. In the proposed AIS method, the joint PDF in Equation 9 is used as
the IS density A(x;v) in the aforementioned CE-AIS approach.

3.2 Updating rules to minimize CE for Gaussian mixture

Substituting the IS density in Equation 9 into Equation 8, the CE minimization problem for a
given round of pre-sampling becomes

%ZN:H(X:.)W(X,-;U,W)VV In {inkN(x, |pk,2k)}} =0 (10)

where X; is the ith sample generated using the density A(x;w), i=1,...,N. Based on a similar pro-
cedure developed for maximum likelihood estimation (Bishop 2006), updating rules to find the
parameter values v={my,..., Tg,li,-.., Kk, Z1,..., 2k} Satisfying Equation 10 are developed as

3 H OO (38, w),(2)x,

B, ="y 11
ZH(XE)W(X,-;u,W)Y,(Zj)
ZH(X;)W(X.';“’W)Yf(zj)(xf 7“_,‘)()‘; 7“'_;)T
Z’j _ =1 . (]2)
ZH (x )W (x5, w)y,(z,)
> H )W (5,0, W)y, (2, )%,
m; = =1 (13)

N

> H(x,)W(x,;u,w)

i=1
where y;(zj)=P(zj=I!x,»)=1th(x‘-||,1J,-,Zj)/ZXk=1nkN(x(-|u;(,Z;() is the “responsibility” z; takes for describ-
ing observation x; This responsibility indicates from which region of importance the samples
may come from. When converged, the mean vector p;, %; and r; in Equations 11-13 respectively
indicate the location, the size and orientation of spread, and relative importance of the important
region represented by the jth Gaussian density in the mixture. It is also noted that at times some
densities may cluster together to fit the complex shape of one important region.

3.3 Algorithm for CE-based AIS using Gaussian mixture

Using the updating rules in Equations 11-13, an algorithm is developed as follows to find a

near-optimal (i.e. minimum CE) Gaussian mixture model:

e [Step 1] Initialize: Choose initial values of parameters A u;((m and =, k=1,...K. For exam-
ple, uniform weights (i.c. 0=, %=, .= nK{U)=1/K), and covariance matrices with unit-
standard deviations and zero correlations (i.e. the identity matrix for all £,’s) will suffice. For
1 ”, the authors propose that the CE-based IS method be run using a single Gaussian density
(Rubinstein and Kroese, 2004), and K points be sampled uniformly on the surface of the
hypersphere with the radius being the half of p obtained from the AIS by a single Gaussian
density. These sampled points can be used as pkm), =l1,... K.

e [Step 2] Sample: Generate N random samples Xy,....Xy, using A(x;w) with w being the initial
parameters from Step 1 (for the first pre-sampling round) or the updated parameters v from
the previous round (for the other pre-sampling rounds). Since A(x;w) is following a Gaussian
mixture, each sample is generated by “ancestral” sampling; First, a latent variable z is sam-
pled according to a multinomial distribution with parameters m,...,mx in w to determine
which Gaussian density will be used to generate samples; and x is then sampled from the se-
lected Gaussian density with the corresponding mean and covariance in w. Calculate the p-
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quantile of the limit-state function g(x) from the samples {g(x1),..., g(xx)}, denoted by g,. If
£,<0, set g,=0, indicating that the adaptive scheme has converged. This corresponds to the in-
stance in which at least pxA of the samples are within the failure domain, i.e. g(x)<0.

e [Step 3] Update: Find the parameters v satisfying Equation 10 using the samples from Step 2.
Use the updating rules in (11)-(13).

o [Step 4] Check convergence: If g,>0, update the iteration step 7 to (¢+1) and return to Step 2.
Otherwise, proceed to Step 5.

e [Step 5] Final importance sampling: Estimate the probability of the event {g(x)<0} using the
Gaussian mixture with the updated parameters v as a near-optimal IS density, i.e.

A 1 N}, |
.[; =Nizf(g(xl)s()}W(x}_;u’ v( )) (14)
f o=t

where N, denotes the number of samples for the final importance sampling, v denotes the

parameters in the Gaussian mixture optimized by the previous steps, u corresponds to the pa-

rameters of the nominal density, e.g., uncorrelated standard normal distribution, and x,

i=1,...,N; are samples generated from the Gaussian mixture PDF in Equation 9 with the up-

dated parameters v,

From the authors’ experience, the quantile percentage in Step 2, p, is typically on the order of
10%. A good rule of thumb for K is “K=Ngy and K=N,,,,,” where Ngy is the number of random
variables in X, and N, is the number of components (for a system reliability problem).

4 NUMERICAL EXAMPLES

The breadth of applications and improved performance of the adaptive IS procedure are tested by
several numerical examples. First, to demonstrate the performance of the method for component
problems with multiple design points, parabolic limit state functions are explored. Then, the me-
thod is applied to a series, parallel and cut-set system problem to show its applicability to a wide
range of system problems. All limit-state functions in the examples are described in the standard
normal space, i.c. f{x;u)=N(x|0,I) where 0 and I respectively denote the vector of zero’s and the
identity matrix.

4.1 Component reliability analysis for parabolic limit-state functions

The first example comes from Der Kiureghian & Dakessian (1998) focusing on FORM and
SORM for situations in which multiple design points occur. The limit-state function is

g(x)=b-x,—k(x, —¢)’ (15)

where b, x and e are deterministic parameters (5, 0.5 and 0.1, respectively for the example), and
x; and x; are uncorrelated standard normal random variables. Figure 1 shows the limit-state sur-
face, the two design points and the contour plots of a function proportional to the best IS density
in Equation 3.

The Gaussian mixture IS density at each round of the pre-sampling is shown in Figure 2
(N=10%, K=2 for each round). The Gaussian mixture density quickly converges to the optimal
distribution parameters after only two rounds. The optimal IS density (“Step 2” in Figure 2)
clearly identifies the most important regions associated with the failure probability, and matches
the best IS density in Figure 1 fairly well. Table 1 summarizes the final results in which the pro-
posed method (CE-AIS-GM) shows superior efficiency to crude Monte Carlo simulations
(MCS) and CE-AIS with a single Gaussian density (CE-AIS-SG). The columns named “Num-
ber of Samples” in the tables of this paper give the sum of the samples for finding the optimal
density (VxK) and those for the final importance sampling () to achieve a given level of coef-
ficient of variation (c.0.v.). For example, “400+3,000” means 400 samples for the pre-sampling
and 3,000 for the final IS. The results demonstrate that the proposed method significantly reduc-
es the number of function evaluations required to achieve a reliable estimate on the failure prob-
ability, while also identifying the most important regions of interest from the mean vectors of
the optimal Gaussian mixture.

79



In further investigation by Kurtz and Song (2012), the proposed method performed well even
when the limit-state function is modified such that the top of the limit-state surface becomes as
important as the areas around the two design points; and the number of Gaussian mixture was
increased, e.g. K = 10, 25, 50, and 100.

Figure 1. Limit-state surface, design points and contours of the best importance sampling density
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Figure 2. Convergence of Gaussian mixture for parabolic limit-state surface

Table 1. Comparison for parabolic limit-state surface with two design points.

C.0.v. Number of Samples Failure Probability

(%) MCS CE-AIS-SG  CE-AIS-GM MCS CE-AIS-SG CE-AIS-GM
10 32,000  400+3,000 400+403 3.16x107°  2.85%107 2.61x107°
5 1.28x10°  400+8,000 400+434 3.12x107  2.98x107 2.49x107
3 3.64x10°  400+23,000  400+1,390 3.06x107%  2.98x107 2.85x107

4.2 System reliability problems

To demonstrate the performance of the proposed method in a wide range of system reliability
problems, Kurtz and Song (2011) applied the method to a series system with the complex limit-
state surface (Waarts 2000), a parallel system with a “joint design point” (Melchers and
Ahammed 2001) and a cut-set system problem (Song and Der Kiureghian 2003).

For the series system example (Waarts 2000), a near- optnna] Gaussian mlxture density was
found through very few rounds of pre-samplings as shown in Figure 3 (N=10" and K=4). It is
noted that the proposed method immediately identifies important regions without performing
preliminary component reliability analysis for each limit-state. The effect of Z; at each impor-
tant region can easily be seen, as this effectively ensures that samples adhere to the slope of the
limit-state surface. The proposed method converged two orders of magnitude quicker than
crude-MCS. Also note that the single search adaptive IS converges to a wrong value, since the
single Gaussian density converged to only one of the four important regions spaced far away
from one another. The c.0.v. behavior for the single point search exhibits a very jagged behavior
and can lead to false confidence at small amounts of samples.

Next, thc method was applied to the parallel system example (Me]chcrs & Ahammed 2001)
using N=10% and K=2. Figure 4 shows how the two Gaussian densities converge to one located
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near the “joint” design point. It is noteworthy that, for limit-state surfaces with only one region
of importance, multiple Gaussian densities in the mixture model can merge to one density with-
out causing numerical issues.

Step 0 Step 1 Step 2 Step 3
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X X % X

Figure 3. Convergence of Gaussian mixture for series system problem

Step D Step 2 Step a

Figure 4. Convergence of Gaussian mixture for parallel system problem

Step2

Figure 5. Convergence of Gaussian mixture for cut-set system problem

Finally, the proposed method was applied to a general (i.e. neither series nor parallel) system
example in Song and Der Kiureghian (2003). The cut-set system event in the paper has three
cut-sets consisting of a total of five components. The results obtained using N=10° and K=10
confirmed that even for a general system event, the proposed method requires much fewer sam-
ples than MCS to achieve the same level of c.o.v. They also indicate that the single point search
results in a density that displays both jagged convergence and a possibility of false early con-
vergence. The limit state and a contour of each Gaussian mixture during the updating process
are shown in Figure 5. One can see that there are two important regions and that the method
managed to identify both of them, even in a domain that is difficult to visualize. The surface of
the density contour is strongly non-spherical, which implies that having more than two densities
in the mixture helped fit the complex shape in this example. This example demonstrates that the
proposed method can be used for general system events with complex limit-state surfaces.

5 SUMMARY AND CONCLUSIONS

To address issues associated with structural reliability problems having complex limit-state sur-
faces and to further enrich the field of importance sampling methods, a new adaptive impor-
tance sampling method using Kullback-Leibler cross entropy coupled with a Gaussian mixture
has been developed. The method searches for a near-optimal importance sampling density by
minimizing the difference between a Gaussian mixture model and the best importance sampling
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density, measured by the cross entropy. This new method obtains a near-optimal sampling den-
sity in very few rounds of pre-sampling by use of closed-form updating rules, which greatly im-
prove the efficiency and accuracy of the final importance sampling. The breadth of applications
of this method was demonstrated through several component problems, a series system problem,
a parallel system problem, and a general system problem. For every situation, the proposed me-
thod required significantly less samples than crude Monte Carlo simulations and adaptive im-
portance sampling using a single Gaussian density. One also finds that the proposed method
avoids false convergence that may manifest for importance sampling approaches using a uni-
modal density model. It is also noted that the mean values and the weights of the converged
sampling densities in the Gaussian mixture can respectively identify important regions and
quantify the relative importance in a variety of component and system reliability problems.
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ABSTRACT: Meta-models are commonly used in structural reliability analysis in order to sur-
rogate limit state functions that depend on the output of a computationally-expensive simulation
model such as a finite element model. In this paper we present a way of using a Kriging surrogate
of the limit state function as a means to derive a quasi-optimal importance sampling density, which
leads to an unbiased estimator of the probability of failure. For computational efficiency a splitting
technique similar to that introduced in subset simulation is used. The method is illustrated on a
two-component series system and a truss reliability problem. It appears remarkably accurate also
for cases with very small probabilities of failure (e.g. 1076/=7).

1 INTRODUCTION

Structural reliability methods aims at quantifying the probability of failure of mechanical sys-
tems subject to uncertainty in their design parameters (e.g. geometry), constitutive laws (material
properties) and loading. In the context of modern engineering, the performance of the system is
assessed through the use of time-consuming numerical models such as finite element models.

Let us denote by M such a computational model, i.e. a function whose input vector & £ D C
RM gathers all the parameters describing the geometry, the material properties and the loading.
The response quantities of interest, e.g. displacements, stress and strain components are gathered
into a vector y = M (). This notation means that for any value of the input vector, the model is
run (whatever its complexity, may it be an analytical model or a complex computational workflow)
to compute the relevant quantities in y.

Due to uncertainty, a probabilistic model of the input parameters is built from the available
information and data, leading to representing the latter by a random vector X with prescribed
probability density function fx. In the context of structural reliability, the performance of the
structure is assessed using a limit state function g that depends on the structural response M ()
and additional parameters d or random variables X' describing the capacily (e.g. strength param-
eters). This limit state function is conventionnally defined as follows:

e The set of parameters {x, ', d} such that g (M (x),z’, d) > 0 defines the safe domain D,.

o The set of parameters {&, 2, d} such that g (M(z),z’,d) < 0 defines the failure domain
Dy.

e The limit state surface corresponds to the zero-level of the g-function.
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Gathering all the parameters into a single notation # € Dx for the sake of simplicity, the
probability of failure of the system is defined by:

Pf:P[g(X)sm:fD L a
r={z:g(®)<

The classical methods for evaluating a probability of failure may be gathered into three main
groups:

e methods based on Monte Carlo simulation (MCS): apart from the crude approach which is
computationally unaffordable for typical probabilities of failure in the range 10~ — 1076,
importance sampling (Au and Beck 1999) and subset simulation (Au and Beck 2001) have
proven their efficiency in many applications. However the number of calls to the limit state
function remains large, typically in the range 1079,

e classical approximation methods such as FORM/SORM are far more efficient but do not
guarantee any accuracy in the result.

e response surface methods rely upon the construction of a surrogate model (e.g. a polynomial
function) which may then be used for intensive Monte Carlo sampling.

Reliability methods based on surrogate models have gained much attention in the last few years
due to the development of high-fidelity surrogate such as polynomial chaos expansions (Sudret
and Der Kiureghian 2002, Berveiller et al. 2004, 2006), Kriging (Bichon et al. 2008, Echard et
al. 2011) and support vector machines (Hurtado 2004, Bourinet et al. 2011) which outperform
the well known second order polynomial approximations. A review of the use of surrogates in
structural reliability may be found in Sudret (2012).

In all these approaches, the surrogate model § of the limit state function is built first (possibly
in an adaptive manner) using some criterion that allows the iterative refinement of the model. Then
it is substituted for the original limit state function in order to evaluate the probability of failure, l

denoted by ﬁf: ‘.
Py~ Py EP[3(X) < 0] :f fx (x)dx 2

By={w:glz)<0} '

However there is usually no indication about the closeness between the true probability of
failure Py and its surrogate-based approximation Py. Recently, Dubourg et al. (2011, 2012) pro-
posed to use a Kriging surrogate model to devise a "smart” importance sampling density: the
method remains within the scope of importance sampling (no substitution) while the sampling
density derived from §(x) is quasi-optimal, thus reducing the number of samples required for
a target accuracy. The goal of the present paper is to extend the idea of meta-model based im-
portance sampling as originally introduced in Dubourg et al. (2012) by coupling it with subset
simulation. The paper is organized as follows. First the basics of Kriging, a technique for build-
ing meta-models is recalled. Then it is shown how a Kriging surrogate model may be used as
a quasi-optimal importance sampling density, leading to an unbiased estimator of the probability
of failure. Finally the approach is used for two application examples, namely a two-dimensional
analytical limit state function and a 10-dimensional truss reliability problem.

2 THE KRIGING SURROGATE

The origin of Kriging is to be found in the field of geostatistics, where engineers try to model the
spatial variability of some quantity based on measurements at specific points in space. It has been
introduced in the domain of computer experiments by Sacks et al. (1989) in the late 80’s . The
modern formulation of this approach is also known as Gaussian process modelling (Santner et al.
2003) . Indeed, it is assumed that the function to approximate, say x € Dx C RM = g{z) is a
particular realization of a Gaussian process Y (x, w):

Y(z,w)=f(z) a+Z(z,w), =x€Dx 3)
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In this equation f ( )T @ is the mean of the process, which is represented by a set of basis func-

tions {f;, i=1,...,P} (e g polynomial functions) and Z (z,w) is a stationary zero mean Gaus-
sian process with variance ¢ and autocorrelation function:
ny(ﬁ,ﬂ:):cryR(:c—a:,B), (z, ') € Dx x Dx )

In the above equation @ gathers all the parameters defining Cyy. Note that for the sake of brevity
the notation w that recalls the randomness of the various quantities is abandoned in the sequel. In
practice, square exponential models are generally postulated:

M iy 2
Ty — Ty,
R(z—2',08)=¢ T 5
(z-='0) XP(Z(Qk )) ©
k=1

In order to obtain the Kriging surrogate a set of computer experiments is run. An experimental
design, i.e. a finite set of points X = {.:c('i) eDx,i=1,... ,N} is selected. The computational
model is run and the limit state function is evaluated. The obtained values are gathered in a vector
T = (g(:c(l)), ,g(a:(N)))T. This procedure is similar to Monte Carlo simulation since the
points in X may be drawn e.g. by Latin Hypercube sampling.

The Kriging estimator at a given point & € Dx is by definition a Gaussian random variate

V(@) ~N (ug (), op (x)) obtained by requiring that it is the best linear unbiased estimator
(BLUE) of g(x) conditioned to the observations gathered in X. After some algebra the Kriging
estimator reads as follows (Santner et al. 2003):

po (@) =F (a:)T a-+ T(:.B)TR71 (T —Fa) (6)
In this equation the following notation 7, R et F is used:
riz) = R ;c—;cm,ﬂ),i:l,...,N )
R; = R a;(i)fm(f),e),i:1,...,N,j:1?.._,N ()
R CUNE ) NRSETE S W ©

Eq.(6) reads whatever the value of the (still) unknown parameters, namely the regression coeffi-
cients a, the variance of the process 0% and the parameters 6 defining the correlation function (5).
In order to best fit these unknown parameters to the available data, a likelihood function is defined
for the “observations”, Le. the pairs { (2!, g (z(?)), i=1, ... ,N}. The maximum likelihood
problem yields analytical expressions for a, 012, as a function of 6:

a= (FTR(H)*IFyI FTRO)"'T 62 = %(r “Fa) RO (T ~Fa) (10

The best values for the correlations lengths gathered in @ are obtained by a numerical optimization.

Apart from the mean prediction given in Eq.(6), Kriging yields the so-called Kriging variance
o (2) which corresponds to an epistemic uncertainty of prediction that is related to the finite size
of the available observation data gathered in X:

L) = of (1~<f(w)T r@ )| ﬂ]{f&;]) an

It is important to notice that the mean Kriging estimator given in Eq.(6) is interpolating the data
(meaning that y (z®) =g (2®), i=1,...,N)and that the Kriging variance is zero in these
points (o%; (8 =0, P=1, ... N)

These features are shown graphically in Figure 1, in which a univariate function « — zsinx is
approximated using 6 points in the experimental design. The dashed area corresponds to the mean
prediction +2 Kriging standard deviations (Eq.(11)). Improving the Kriging meta-model will be
possible if new points are added in the experimental design that are drawn in regions where the
dashed area is wide.
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Figure 1: Kriging surrogate of a univariate function z — zsinz using 6 observations. The dashed area
corresponds to the mean prediction =2 Kriging standard deviations (confidence interval).

NB: The Kriging variance J%/ (x) is interpreted as a measure of the epistemic uncertainty
of prediction in each point x. It shall not to be confused with the aleatoric uncertainty
represented through random vector X that is related to the probability measure P [dx] =
fx(x)de. Thus o%(m) may be used as an indicator for adaptively enrich the experimental

design and refine the meta-model.

3 META-MODEL-BASED IMPORTANCE SAMPLING

3.1 Principle

As already mentioned in the introduction, meta-models are usually used as a substitute for the true
limit state function in reliability analysis. As a consequence it is hardly possible to master the
accuracy of the obtained results. The idea of using the surrogate as a means to derive an optimal
importance sampling density has emerged in Dubourg et al. (2011, 2012). The principle is now
recalled. Introducing an importance sampling density h(x), BEq.(2) may be recast as:

fx(x) Ix(X)

Py = 1 hiz)de =Ep, [1p, (X 12
r= [, 10 @ (o) de = B [10, (X) 222 (12
The optimal density, i.e. the one that leads to a minimal variance in the context of Monte Carlo
simulation is proven to be (Rubinstein & Kroese 2008) :

LDf(m) fX(m) _ l‘Df(ﬂl') fX($)
IDX 1Df($) fx(z)dx Pf

It is nothing but the original density of the input parameters fx which is truncated to the failure
domain. It is of no direct use since it includes the unknown quantity P in its definition. Starting
from a Kriging surrogate of the g function as described in Section 2, Dubourg et al. (2012) propose
to use the following probabilistic classification function 7 as a surrogate of the indicator function
1p, () of the failure domain:

n(a) =P [V (2) <0] = (0_“7?(“3)) (14)

o ()

h*(z) = (13)

where ® is the standard normal cumulative distribution function. In this equation P[] is the
Gaussian probability measure associated to Kriging, not to be confused with P (-). Consequently
the proposed quasi-optimal importance sampling (also called instrumental) density reads:

ey ) xle) @ (Au?(m)/grp(m)) fx(@) )
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where the normalization constant Py, reads:
def
Pr. ¥ E (X)) = /D & (—pg (@) /op (@) fx (@) da (16)
X

Py, is called the augmented probability of failure as it takes into account both the aleatory un-
certainty in the input parameters (modelled by X'} and the epistemic uncertainty in the Kriging
prediction. Using this notation, Dubourg et al. (2012) prove that:

113,(X)}

— 17
(X (amn

Pf = Qeorr Pff Neorr — ]E‘,'L [

where a1 a correction factor obtained by taking an expectation w.r.t. the instrumental PDF in
Eq.(15). The augmented probability of failure Pr. and the correction terms are given Monte Carlo
estimates, see details in the above reference.

3.2 Enhancing meta-1S through subset simulation

According to Eq.(16) the augmented probability of failure may be computed by Monte Carlo
simulation using samples drawn with respect to the input PDF fx (x):

N, N,
. 1 £ 1 €
o_ L oy L o (D) Jres (D
re= w2 e NE;@( @)/ o5 () (18)

As each evaluation only requires computing the Kriging mean and standard deviation in Eqs.(6),
(11), it is computationally inexpensive in usual cases. However, when small probabilities of failure
are sought, millions or tens of millions evaluations of the latter equations become intractable. For
this purpose, it is proposed to compute Py, by introducing a splitting technigue similar to the one
used in subset simulation.

Let us define a decreasing sequence of real numbers gy = +00 > ¢ > -+ > g5 = 0 and the

associated probabilistic classification functions {m;(x),i =1, ..., s} and probabilities of failure
Pie: ( )
- qi — p (T
mi(@) =P {Y(z) < ql] —0 (—Y) pie = E[m:(X)] (19)
oy ()
The augmented probability of failure is recast as:

Pfs = ];X 71‘3(:1:) fx(.’[,‘) dx = fDX %stl(m) fX dr =ps 1 ¥ Ps|s—1¢ (20)

Ps—1e =Ex [Ws—l(X)]
WE(X) J:/ "TS('T') h* (:I:)d:ﬂ 2h

ge=Eps |22
Pojs—1c = En, [wsq(X) Dx Ts—1(x)

In the latter equation the quasi-optimal intermediate instrumental PDF reads:

s poy _ _ Ts—1(®) fx ()
) @ x(@) o

8
By applying the splitting technique (s — 2) times one eventually gets Py, = p1. H Diji—1e-

i=2

As in classical subset simulation, the generation of samples that follow the instrumental den-

sity hY_(x) o ms—1(x) fx is carried out using a modified Metropolis-Hastings algorithm and the

intermediate thresholds {qi, ... ,gs—1} are determined on-the-fly so that the intermediate proba-

bilities of failure are around 10%. The coefficient of variation of the simulation which rely upon

Markov chain Monte Carlo sampling and associated issues with correlated samples is discussed in
Dubourg (2011).
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Figure 2: Example 1: limit state surface (Eq.(23)) and quasi-optimal, bimodal importance sampling density
obtained from Kriging (contours)

4 APPLICATION EXAMPLES

4.1 A 2D series system

Let us consider a two-component series system where the limit state function is defined by Au &
Beck (1999) as follows:

. 4 g2
9(x1,22) = min {c 1 g g BT S 1‘11‘2} (23)
where c is set equal to 3, 4 or 5 respectively. The results obtained by Meta-IS are reported in Ta-
ble 1 together with reference values obtained by crude Monte Carlo simulation, subset simulation
(as implemented in FERUM 4.1 (Bourinet et al. 2009)) and the original results by Au & Beck
(1999).

It is observed that the approach by Au & Beck (1999) leads to a relative error up to 29% in Py
(4% in B), as does subset simulation for ¢ = & (29% in Py, 1.5% in ). In contrast the proposed
approach is always more accurate with less than 4% error in P (less than 0.2 % in &) whatever
the threshold.

Table 1: 2D series system — reliability results

Method Monte Carlo (ref)  Subset Au & Beck (1999) T Meta-IS?
N 107 300,000 100 + 500 44 + 600
c=3 ps 3.48x 1073 348 x107% 247 x 1073 3.54 x 1073
CoV. 0.5% <3% 1% <5%
N 108 500,000 100 + 300 64 + 600
c=4 p;s 8.94 x 1075 834x107% 6.30x10°° 8.60x 107%
CoV. 3.3% <4% 8% <5%
N 10° 700,000 100 + 500 40 + 2,900
c=5 py; 9.28 % 1077 6.55x 1077 6.54x 10°7 9.17 % 107
CoV. 3.3% <5% 12% <5%

The total computational cost N¢,; = N + Nig is reported in Column #5, where V is the size
of the experimental design for the Kriging surrogate and Nyg is the number of samples used for
evaluating the correction factor. It is equal to a few hundreds for ¢ = 3 and ¢ = 4. It amounts to
almost 3000 for ¢ = 5: this is due to the fact that the optimal sampling density is multimodal (as
shown in Figure 2), where the two modes are far away from each other when ¢ = 5, which leads
to some difficulties in applying the Metropolis-Hastings algorithm in this case.

4.2 A truss structure

Let us consider the truss structure sketched in Figure 3. The structure made of 23 members, namely
11 horizontal bars and 12 oblical bars is modelled by truss elements. The upper part is subject to
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vertical loads. Ten parameters are modelled by independent input random variables, namely the
Young’s moduli and the cross-section areas of the horizontal and the oblical bars (respectively
denoted by F1, A and F», Ay) and the applied loads (denoted by P, i = 1,...,6), whose mean
and coefficient of variation are reported in Table 2. Thus the input random vector is defined by:

Xphys = {E17E2:A11A21P17“'1P5}T (24)
W B | F P R
N
B4 i Table 2: Example #2 - Input random variables
e " \ :I?m Variable Distribution Mean CV
£ + i lem - E;, B, (Pa) Lognormal  2.10x10™  10%
" ' Ay (m?) Lognormal  2.0x107%  10%
| i _,l Az (m?) Lognormal  1.0x10°%  10%
§ PPy Gumbel 5.0x10°  15%

Figure 3: Example #2 — Truss structure
with 23 members

The limit state function is related to the serviceability of the truss with respect to its midspan
deflection:
9(X) = upmax — FEM(X) (25)
Two values of the threshold are selected, namely upax = 10 cm and umax = 14 cm. The associated
probabilities of failure are reported in Table 3 together with reference results obtained by Blatman
(2009)

Table 3: Truss structure — reliability results

Threshold Importance sampling FORM Meta-IS®

(cm) (Blatman, 2009)
Niot 500,000 121 160 +31

10 P 4.00 x 1072 281 x1072 4.35x1072(C.0.V=12%)
A 1.75 1.91 1.71
Nigt 500,000 121 160 +31

14 Py 345x1075 128 x 1073 3.47 x 107% (C.0.V.=3.7%)
A 3.98 4.21 3.98

In this example again, the accuracy of the proposed method is remarkable, with only a few
percent of error on the probability of failure for both cases upmax =10 and 14 cm (with respect to a
reference solution obtained by a design-point-based importance sampling approach, see Blatman
(2009) for details) at a computational cost which is in the same order of magnitude as FORM.

5 CONCLUSION

A meta-model-based importance sampling method has been proposed in order to compute unbi-
ased estimates of the probability of failure appearing in structural reliability analysis. A Kriging
surrogate model of the limit state function is built first using a set of computer experiments. It
then helps to define quasi-optimal instrumental densities that are used in the context of importance
sampling. The probability of failure is cast as the product of a) an augmented probability of failure
which takes into account both the aleatory uncertainty on the model parameters and the epistemic
uncertainty related to Kriging, and b) a correction factor. Only the latter requires running the
“true” limit state function.

In a basic setting the augmented probability of failure could be evaluated by crude Monte Carlo
simulation since it does only use calls to the surrogate limit state function (more specifically, the
Kriging mean and standard deviation). For small probabilities of failure though, this becomes
intractable. Thus a procedure is proposed to decrease the associated computational cost using
splitting, as in the original subset simulation method.

Two application examples are shown, namely a two-dimensional series system and a finite
element reliability analysis of an elastic truss. In both cases the proposed approach enables the
computation of small probabilities of failure (up to 10~7) with a remarkable accuracy, i.e. than
5% error on Py and a two-digit accuracy on the associated generalized reliability index.
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ABSTRACT: The subset simulation is an adaptive simulation method that efficiently solves
structural reliability problems with a large number of random variables. The method includes
sampling from conditional distributions, which is achieved through Markov Chain Monte Carlo
(MCMC) algorithms. This paper investigates the performance of different MCMC algorithms
for subset simulation. It is found that most of the MCMC algorithms proposed in the literature,
based on the Metropolis-Hastings (M-H) sampler, do not present significant improvements over
the component-wise M-H algorithm originally proposed for subset simulation in [Au & Beck,
Prob Eng Mech, 16(4): 263-277, 2001]. Based on these findings, a novel approach for MCMC
sampling in the standard normal space is introduced, which has the benefit of simplicity. More-
over, it is shown that an optimal scaling of either this new approach or the component-wise M-
H algorithm can improve the accuracy of the original algorithm, without the need for additional
model evaluations.

1 INTRODUCTION

Let X denote the basic random variable space of dimension n, which models the system varia-
bles that are expected to present an uncertain behavior. Assuming the usual case, where the
probabilistic description of X comes in terms of marginal distributions and correlations, we can
adopt the Nataf model (Gaussian copula) for the joint distribution of X and then define a map-
ping U = T(X) to a transformed space U consisting of n independent standard normal random
variables (Der Kiureghian & Liu 1986). In the case where the joint distribution of X is known,
then the transformation U = T(X) can be performed in a straightforward fashion (Hohenbichler
& Rackwitz 1981). Let F = R" be the failure domain in the U-space, such that u € F defines
the event of unsatisfactory performance of the system. The probability of failure can then be ex-
pressed as follows:

%wmmf 1 () @ (u) du )

ucRn"

Pf = P(F) = J.

uer
where @, (u) = [1i-; @(w;) and @(.) is the standard normal PDF. The function I (u) is the in-
dicator function: Iz (u) = 1 if u € F and Iz(u) = 0 otherwise.

The evaluation of the probability of failure is not a trivial task, especially when the perfor-
mance of the system for a realization of the random variables is obtained through a computa-
tionally demanding model evaluation. The Monte Carlo method is a robust technique that is able
to handle any model, independent of its complexity. In this method, the probability of failure is
estimated by the sample mean of the indicator function:

N 1V
b=y, I @
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where {uy:k = 1,.., N} are independent and identically distributed samples of the joint PDF
¢n(u). Bquation 2 gives an unbiased estimate of Pr. The coefficient of variation of the estimate

reads:
1-P
i
. 3
6pf NP; &L

As shown in Equation 3, the coefficient of variation, which serves as a measure of accuracy of
the estimate, does not depend on the dimension n. Hence, the efficiency of the Monte Carlo
method does not depend on the number of random variables. However, for small values of Fr, a
large number of samples N is required to achieve a sufficiently small 65 ..

In order to overcome the inefficiency of the Monte Carlo method in estimating small failure
probabilities, while maintaining its independency on the number of random variables n, a num-
ber of advanced simulation methods have been developed, including the subset simulation (Au
& Beck 2001), the spherical subset simulation (Katafygiotis & Cheung 2007) and the asymptot-
ic sampling method (Bucher 2009). Here, we focus on the subset simulation. This method ex-
presses Py as a product of conditional probabilities that are significantly larger than Py. These
conditional probabilities are then estimated by application of Markov Chain Monte Carlo
(MCMC) sampling.

This paper discusses different MCMC algorithms that have been proposed for subset simula-
tion. Moreover, a new approach is presented for MCMC in the U-space. In Section 2, the subset
simulation is described. Section 3 reviews the considered MCMC methods and evaluates their
performance.

2 SUBSET SIMULATION

The subset simulation is an adaptive Monte Carlo method proposed by Au & Beck (2001) for
the estimation of small failure probabilities in high dimensional problems. The idea behind sub-
set simulation is to express the failure domain F as the intersection of M larger intermediate

failure domains:
M
F=(] 5 ©)
i=1

where F; D F, D --- D F, = F, hence the name “subset simulation”. The probability of failure
is then estimated as a product of conditional probabilities:

M M
P = P(F)=P (ﬂ,-zl F,-) =r@| [ PeiA-D )

An appropriate selection of the intermediate failure domains can lead to large conditional prob-
abilities. That is, the original problem of evaluating a small failure probability reduces to a se-
quence of M intermediate problems that correspond to the estimation of larger probabilities.

The probability P(F;) can be computed by application of crude Monte Carlo simulation
through sampling of ¢, (u). For estimating the probabilities {P(FJ |Fj,1):j =2,..,M}, we need
to generate samples of the conditional PDFs {rpn(ulﬁ,-_l):j =2,..,M}, where:

pr (W, , ()
P(Fj-1)

A direct sampling of (pn(ulF}-,l) by application of the acceptance-rejection method is ineffi-
cient, especially as the domain F;_; approaches the actual failure domain. However, MCMC
techniques can be applied for sampling qon(u|FJ,-*1). MCMC methods produce samples of a tar-
get distribution, by constructing a Markov chain that has the target distribution as its stationary
distribution (Rubinstein & Kroese 2007). The derived samples will be distributed according to
@ (u|FJ,-,1), however they will not be independent.

on(ulF_,) = (6)
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We now need to specify the intermediate failure domains {Fj:j = 1,...,M — 1}. Let G(u) de-
note a limit-state function with negative values defining the failure event, ic. F ={u€
R™: G (u) < 0}. Without loss of generality, we assume that the function G (u) can express any
type of system failure in the U-space. The intermediate failure domain F; can then be defined as
Fj = {u e R*:G(u) < ¢}, where ¢; > ¢; ... > ¢y = 0. The values of {c;:j=1,..,M —1} can
be chosen adaptively, so that the estimates of the conditional probabilities correspond to a cho-
sen value py, e.g. po = 0.1. This is achieved by successively sampling each conditional PDF
qun(u|F)-_1 and setting ¢; equal to the [(1 — py)N + 1]-th largest value among the samples
{G(uy):k = 1,.., N}. This procedure is repeated until the actual failure domain F), is reached,
for which the threshold ¢, = 0 is given. We can then obtain an estimate of the failure probabil-

ity as follows:
Pp = P} = o5 P (Fy|Fag-1) @)

The estimate P (Fyy|F—1) of the conditional probability is as follows:
s 1V
P(FulFun) =5 ). Ir(@o) ®
k=1

where {u:k =1, ..., N} are samples of ¢, (u|Fy_,). It should be noted that the estimator ﬁf in
Equation 7 is biased for a finite N, due to the correlation between the estimates of the condition-
al probabilities, but it is asymptotically unbiased (Au & Beck 2001).

3 MCMC ALGORITHMS FOR SUBSET SIMULATION

As discussed in Section 2, the subset simulation applies MCMC sampling to simulate each con-
ditional PDF gon(ulP}—_l). In this section, first the general principle of MCMC sampling for sub-
set simulation is summarized, followed by a review of different proposed and new methods.

Let us define a stationary discrete-time vector random process {U,, t € N} with marginal PDF
©n (u|PJ,-_1), which possesses the Markov property. That is, the random vector at position ¢ is
distributed according fo a conditional PDF given the outcome of the random vector at position
t — 1. This conditional PDF is termed transition PDF and is denoted by p(u4 |u,), where ug, u,
are subsequent states of the chain. The transition PDF satisfies the following condition:

P(ul|“o)€0n(un|Fj—1) = P(“of“ﬂ‘ﬂn(“ﬂﬂ‘—l) )

The above is termed reversibility condition and it is an essential property of the Markov process
Uy, since it ensures that the stationary PDF of the process is ¢, (u|F:,-_1

MCMC methods produce samples of a distribution by simulating states of a stationary Mar-
kov process whose marginal distribution is the desired distribution. This can be achieved by
simulating every new state of the process from a transition PDF p(uy|u,) that satisfies the re-
versibility condition. Starting from a state that may or may not be distributed according to the
target distribution, the Markov chain will asymptotically converge to the target (stationary) dis-
tribution (Rubinstein & Kroese 2007). The transient period that is required until the Markov
chain reaches its stationary state is termed burn-in period. Moreover, the generated samples will
be correlated according to the correlation of the Markov process which will depend on the par-
ticular choice of p(u4|ug).

In the context of subset simulation, MCMC sampling is applied at subset j to sample
O ( |F}-_1) through simulating states of a Markov chain using as starting point (or ‘seed’) each
sample {u;: k = 1, ..., N¢} that fell in F;_; at subset j — 1. Since all the samples uy are distrib-
uted according to (pn(- |F; -,1), all states of the Markov chains will be distributed according to
the target distribution qon(- f}'}_l). Hence, the Markov chains do not require a burn-in period to
reach their stationary states. The coefficient of variation of the estimate of each conditional
probability P; = ﬁ(f'}lFJ,--l) can be estimated in terms of the sample variance of the stationary
process Ir (Ug) (Au & Beck 2001):
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1-5
7= [NE (1+v) (10)
where
= ZZN/Nf_l (1 ]‘Nf) *) an
yJ - R N p)

where Ny is the number of seeds, N/N; is the length of each chain and p;(k) is the auto-
correlation coefficient of the sequence {Ir,(ue), t = 1,..., N/N¢}. p;(k) can be estimated from
the samples. The estimator of Equation 10 assumes that the different chains are uncorrelated
through the indicator function, i.e. possible dependence between the different seeds is neglected.
Equation 10 indicates that the efficiency of the subset simulation decreases if the chain correla-
tion increases. A decreased chain correlation implies that the chain explores its state space fast-
er. This motivates the introduction of a new measure of the efficiency of the estimator ﬁj, based
on the expected Euclidean distance between two successive samples, say ug and uy:

1 n
b=l ) o= u)? (12)

where uy; is the i-th coordinate of u,. A; can be viewed as the average velocity of the different
chains. A maximum A; will give a minimum chain dependence and hence a minimum coeffi-

cient of variation 5;3}..
In the following, we assess the efficiency of different MCMC algorithms for subset simula-

tion.

L

3.1 Metropolis-Hastings algorithm

The Metropolis-Hastings (M-H) algorithm (Metropolis et al. 1953, Hastings 1970) is the most
widely used MCMC method for sampling from distributions that are difficult to sample from di-
rectly. Consider a n-dimensional proposal PDF g (- |u,) that depends on the current state of the
chain. The transition from the state u, to the next state u is described by the following steps:

1. Generate a candidate v.
l.a. Generate a pre-candidate § by sampling from from the PDF g (- |up)
1.b. Accept or reject §
& with prob. a(ug, §)
Ve {UQ, with prob. 1 — a(uy, ) (13)

where
u
a(ug,§) = min[l,M] -
@n(ug) q(€lug)
2. If & was rejected set u; = uy. Else, accept or reject v
% VEF1
) 15
1 {UQ; Ve F}—l ( )

It can be shown that the transition PDF that results from the above procedure will satisfy Equa-
tion 9 independent of the choice of the proposal PDF q(: |u,) (Hastings 1970). If the proposal
PDF has the symmetry property, i.e. g(v|u) = g(u|v), the algorithm reduces to the original
Metropolis sampler (Metropolis et al. 1953).

As discussed in (Au & Beck 2001), the M-H algorithm becomes inefficient for high dimen-
sional problems. This is due to the fact that the probability that the pre-candidate is rejected in
step 1 increases rapidly with increasing number of dimensions n. This will lead to many repeat-
ed samples and hence to an increased correlation of the Markov chain. This is illustrated in Fig-
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ure 1, where the acceptance rate of the pre-candidate state of the M-H algorithm is plotted
against the random dimension 7.

0.7
0.6 1

acceptance rate
e e e oo
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0 10 20 30 40 50 60 70 80 90 100
number of random variables

Figure 1: Acceptance rate of the original M-H algorithm applied to sampling from the independent stand-
ard normal distribution, as a function of the number of random variables n.

3.2 Component-wise M-H

The component-wise M-H algorithm was proposed by Au & Beck (2001) for sampling from
high dimensional conditional distributions. The method requires that the random variable space
be independent, however independence is achieved by the transformation of the original random
variable space to the U-space. The method differs from the original M-H algorithm in the gener-
ation of the candidate state. That is, instead of using a n-dimensional proposal PDF, each coor-
dinate v; of the candidate state is generated from a one-dimensional proposal PDF q (- |ug;) that
depends on the i-th coordinate wg; of the current state. The algorithm is summarized as follows:

1. Generate a candidate v = (v, ---,v,). Foreachi = 1,...,n
1.a. Generate a pre-candidate &; from the PDF q(- |ug;)
1.b. Accept or reject &;

vi=

{ g, with prob. a(ug;, &) (16)
Up;, with prob. 1 — a(uy;, &)

where

@(fi)Q(uedfi)] (17

@)= 00 {1m

2. Accept or reject v: apply Equation 15.

Due to the independence of the random vector U, the component-wise M-H algorithm satisfies
the reversibility condition independent of the choice of the one-dimensional proposal PDF. Au
& Beck (2001) suggest to choose g (- |uy;) as the uniform PDF centered at ug; with width of 2,
i.e. twice the standard deviation at the U-space — the optimal choice of the spread of the pro-
posal PDF is discussed in Section 3.7. Moreover, due to the component-wise generation of the
candidate state, the probability of repeated candidates decreases fast with increasing number of
random variables n. Hence, the method is suitable for application to high-dimensional prob-
lems.

3.3 M-H with repeated generation of pre-candidate states

A different approach for reducing the correlation of the samples was proposed by Santoso et al.
(2011). In this method, the candidate state is generated through a repeated generation of pre-
candidate samples until acceptance of the pre-candidate is achieved. Hence, the algorithm
avoids the generation of repeated candidates, thus reducing the chain correlation, as compared
to the original M-H algorithm. The update of the Markov chain is as follows:
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1. Generate a candidate v.
1.a. Generate a pre-candidate § from the PDF g (- |up)

1.b. Accept or reject §

(% with prob. a(ug, §)
o= {uo. with prob. 1 — a(ug, &) (18)

where

0 (&) q(uy|¥) } (19)

ity 5)= mi“{l’m

l.c. If € is rejected go to 1.a.
2. Accept or reject v: apply Equation 15.

This approach is based on the M-H with delayed rejection (Tierney & Mira 1999), however in
the latter method the acceptance probability of the pre-candidate sample is updated in each re-
generation in order to ensure the satisfaction of the reversibility condition.

The method does not allow for an analytical expression of the transition PDF. Santoso et al.
(2011) evaluated the transition PDF numerically for a one-dimensional truncated normal distri-
bution using a uniform proposal PDF and showed that the reversibility condition is approxi-
mately satisfied. However, it turns out that the stationary distribution of the chain will differ
from the target distribution. This is illustrated in Figure 2, where the CDF of the one-
dimensional truncated normal distribution with different normalizing constants is compared to
the empirical CDF from 10* samples.

(2) (b)
1——— _—— ff——
--- Empirical CD 0.9 Empirical cod
0.8 —Target CDF 0.8 —Target CDF
0.7
o 0.6
= *
= Zo.s
Q. 0.4
0.3
0. 0.2
o i
ol e
5 4.5 4 3.5 3
x %

Figure 2: Empirical CDF of the M-H with repeated generation of pre-candidate states against target CDF
of the Markov cham for the one-dimensional truncated normal distribution with probability normalizing

constant (a) 107 and (b) 1073,

The fact that the target distribution is different from the stationary distribution of the chain may
lead to biased probability estimates. Consider a reliability problem modeled by the following
linear limit-state function at the U-space:

G(U) = —%Z;Ui 4B (20)

The probability of failure for this function is ®(—p8), where ®(:) is the standard normal CDF
For a chosen conditional probability pg, the failure probablllty at each subset level j is Po
Hence, the threshold ¢; at the correspondmg subset level is ¢; = B + CIJ‘I(pU) Figure 3 shows
the relative bias for subset levels j = 2 and j = 4, i.e. the difference between the true probabil-
ity Py and the estimate Py averaged over 500 mdependent subset simulation runs and divided by
Pr, for py = 0.1 and 500 samples per subsct level. It is shown that the probability estimate is
slightly biased and the bias tends to increase with increasing subset level, corresponding to a de-
creasing failure probability. On the other hand, the component-wise M-H gives a nearly unbi-
ased estimate, since the produced samples follow the target distribution of the Markov chain.
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Figure 3: Relative bias of the estimator ﬁf from 500 independent simulation runs with the M-H with re-
peated generation of pre-candidate states and the component-wise M-H at subset level (a) j = 2 and (b)
i=4

number of random variables

3.4 Component-wise M-H with delayed rejection at the first acceptance level

As discussed in Section 3.3, a repeated generation of pre-candidate states requires that the ac-
ceptance probability is adapted to account for the fact that the sample was rejected, in order to
model the target distribution exactly. This procedure is called delayed rejection and was devel-
oped by Tierney & Mira (1999) for application to Bayesian statistics. Miao & Ghosn (2011) ap-
plied this approach in combination with the component-wise M-H algorithm leading to the fol-
lowing updating procedure:

1. Generate a candidate v = (vq,-+,1,). Foreachi = 1,...,n
1.a. Generate a pre-candidate &,; from the PDF g4 (- |ug;)
1.b. Accept or reject &;
(&1 with prob. a; (g, &1;)
Vi = {um-, with prob. 1 — a, (ug;, €1;) @1)

where

©(&1) g1 (ugil1)
"o(ug) g1 (fulum‘)} @A

as (Ug;, §1;) = min {1
1.c. If &; was rejected, generate &,; from g, (- |ug;, &1 )
1.d. Accept or reject &5;

= {fz:'r with prob. a; (uos, $14, $2:) 23)
b (o with prob. 1 — az (o, $14, §24)

where

. ©(§20)q1(61e) $20) 92 (oil §20, €10 )1 — a1 (824 &10)]
a2 (on $au-$2e) = “““[1’rp(uoaql(af|um-)q2(fﬁlum-, = al(um,elm} @4

2. Accept or reject v: apply Equation 15.

The algorithm allows for the second proposal PDF to depend not only on the current state of the
chain but also on the rejected pre-candidate. It can be shown that the method satisfies the revers-
ibility condition independent of the choices of the two proposal PDFs. The method will reduce
the chain correlation, since fewer repeated pre-candidates will occur, however its benefit is lim-
ited to low-dimensional problems. For high-dimensional problems, the acceptance rate is high
already for the first pre-candidate.

97



3.5 Simulation of conditional samples in U-Space

In the first step of the M-H algorithm for subset simulation, one is sampling a candidate v from
the joint Gaussian PDF ¢,,(+), conditional on the previous sample u,. One is free to assume that
v and uy are jointly Gaussian with correlation coefficient p. Hence, the PDF of v will be the
conditional normal distribution with mean value pug and covariance matrix (1 — p?)I, where I
is the unit diagonal matrix. It is possible (o directly sample from this distribution, thus avoiding
the generation of repeated candidates through rejection of pre-candidate states. This leads to the

following updating scheme:

1. Generate a candidate v = (vy,---,v,). Foreachi =1,..,n
Generate v; from the normal distribution with mean pug; and standard deviation 4/ 1 — p?
2. Accept or reject v: apply Equation 15.

It is trivial to see that the transition PDF between u, and u; satisfies the reversibility condition.
Since we eventually sample from the conditional normal distribution (pn(- |FJ,-_1), a small corre-
lation between the actual and the candidate state does not imply a small correlation of the final
samples. This is due to the fact that a very small p will lead to many rejected samples. On the
other hand, a large p will increase the acceptance rate but will lead to a larger correlation of the
resulting samples. Section 3.7 comments on the optimal choice of p.

Besides its simplicity, the advantage of this approach lies with the fact that the candidate state
is always accepted, without compromising the stationary distribution of the chain. Figure 4
compares the coefficient of variation of the probability estimate obtained by the algorithms de-
scribed in Sections 3.2-3.5 for the limit-state function of Equation 20 in terms of the number of
random variables n. For the component-wise M-H and the M-H with repeated generation of pre-
candidates, the proposal PDF is chosen as the uniform PDF with width 2. The same PDF is cho-
sen for both proposal PDFs for the component-wise M-H with delayed rejection. For the condi-
tional sampling method, the correlation was chosen as 0.8. It is shown that the methods have
similar performance for n > 10, while the conditional sampling algorithm performs better than
the other methods in low dimensional problems. However, it should be noted that the algorithms
with lower acceptance rate of the pre-candidate have the advantage that fewer limit-state func-
tion evaluations are required.
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Figure 4: Coefficient of variation § of the probability estimates evaluated from 500 independent subset
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3.6 Component-wise M-H with delayed refection at the second acceplarice level

The algorithms considered until now focus on the generation of the candidate state, i.e. they
share the same second acceptance step. Therefore, they do not involve additional limit-state
function evaluations. Zuev & Katafygiotis (2011) applied the delayed rejection concept at the
second acceptance level, i.e. after the limit-state function has been evaluated to check whether
the candidate state lies in F;_;. If the candidate state is rejected, the accepted coordinates of the
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pre-candidate state are re-sampled from a different one-dimensional proposal PDF and accepted
or rejected with a suitably computed probability. The updating procedure reads:

1. Generate a candidate v = (vy,-+,v,). Foreachi=1,..,n
1.a. Generate a pre-candidate &;; from the PDF ¢, (- Jugi)
1.b. Accept or reject &y

_ (¢ with prob. a; (Wi, §1:)
L {um-, with prob. 1 — a; (ups €11) 25

where
M_)} (26)

ay (ugi, §1;) = min {1’ @ (ug;) q1(§1iluor)

2. Accept or reject v: apply Equation 15.

3. If v was rejected. For each i = 1, ..., n, if &;; was accepted
3.a. Generate a new pre-candidate &;; from the PDF g, (- |uoi §11)
3.b. Accept or reject &y;

&ais with prob. az (g §10€21)
5 _ 27
=B i prob. 1 - asCuigy £an Ex0) @7

where

©(&20) a1 (61318202 (g 1820 E1) a1 (§200 €11) ] 28)

@2 (uop 1i$2:) = min {1’ @ (o) 911 w0 a2(Eai o S10)@1 (Uoi §1:)

4. Accept or reject v: apply Equation 15.

Zuev & Katafygiotis (2011) showed that the algorithm satisfies the reversibility condition. The
method reduces the chain correlation, since the acceptance probability of the candidate state in-
creases. Moreover, its efficiency is independent of the random dimension. However, the method
requires additional limit-state function evaluations, as compared to all the previous approaches.

In Figure 5, the performance of the algorithm for the limit-state function of Equation 20 with
n = 100 is compared to the one of the component-wise M-H. The proposal PDF is chosen as
the uniform PDF with width of 2 for both levels. The conditional probability is chosen as
po = 0.1, while the number of samples N at each level for the component-wise M-H is chosen
such that the two algorithms result in the same limit-state function evaluations, starting with
N = 500 for the algorithm with delayed rejection. The coefficient of variation of the probability
estimates is evaluated from 500 independent simulation runs. It is shown that the gain in effi-
ciency is rather small, which agrees with the findings in (Zuev & Katafygiotis 2011). However,
the authors show that a larger gain in efficiency might be achieved by choosing a different pro-
posal PDF in the second level.

0.5 -
0.45
0.4 -
0.35

- -0 = Component wise M-H with
delayed rejection at 2nd level

01 - —— Component-Wise M-H

subset level j

Figure 5: Coefficient of variation of the probability estimates by the component-wise M-H and the com-
ponent wise M-H with delayed rejection at second acceptance level with the same LSF evaluations.
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3.7 Adaptive MCMC with optimal scaling

It is shown above that the component-wise M-H and the conditional sampling method have sim-
ilar performance in high dimensions. Also, it is discussed that the performance of the condition-
al sampling method depends on the choice of the correlation p between the actual and the can-
didate state. Similarly, the performance of the component-wise M-H depends on the variance of
the proposal PDF. A large variance (resp. small p) will lead to many rejected candidates and a
small variance (resp. large p) to a high correlation between states. Zuev et al. (2011) conjec-
tured that an optimal variance of the proposal PDF at each subset level will give the minimum
¥; in Equation 11 and hence the minimum coefficient of variation of the conditional probability
estimates. In their study, they varied the variance of the proposal PDF and evaluated y; and the
second level acceptance rate of the algorithm. This led to the observation that y; is rather flat at
the optimal acceptance rate, which lies in the interval [0.3, 0.5].

Here, we perform a similar study by varying the variance of the proposal PDF of the compo-
nent-wise M-H algorithm and the parameter p of the conditional sampling method. Moreover,
we measure the performance of the methods in terms of the average velocity of the chains 4,
defined in Equation 12. The curves obtained for the limit-state of Equation 20 at the subset lev-
els j = 2 and j = 4 are shown in Figure 6. The results for the two algorithms agree with the
ones in (Zuev et al. 2011). That is, the performance of the two algorithms can be optimized if
the acceptance rate is kept between 0.3 and 0.5. This can be achieved by a scaling of the param-
eter of each algorithm after the simulation of each chain. If the acceptance rate of the chain is
smaller than 0.3 then the variance of the proposal PDF is decreased (resp. the correlation pa-
rameter p is increased) and if it is larger than 0.5 the variance is increased (resp. p is decreased).
Figure 7 shows the coefficient of variation of the probability estimates obtained from this adap-
tive procedure with the two considered algorithms for the limit-state function of Equation 20
with n = 100. The results are compared with the original version of the algorithms with a uni-
form proposal PDF with width 2 for the component-wise M-H algorithm and a correlation pa-
rameter p = 0.9 for the conditional sampling method. It is shown that the adaptive approaches
give a smaller coefficient of variation at all subset levels.

(a) (b)
0.4 : 0.25 :
{ i
0.35 s T
™ 0.2
0.3 \ /-——--q‘__
0.25 \\ 0.15 # S,
4 02 N ! /
0.15 X 01 /
01 Component-Wise M-H [ 0.05 4 Component-Wise M-H
0.05 - - - - Conditional sampling - - - - Conditional sampling
T T T H H T T
0 T T t f Y + t t t
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
acceptance rate acceptance rate

Figure 6: Chain velocity in terms of the second level acceptance rate for the component-wise M-H and the
conditional sampling method at subset level (a) j = 2 and (b) j = 4.

4 CONCLUSION

This paper reviewed existing MCMC methods for subset simulation and proposed a new meth-
od that is based on sampling from a conditional normal distribution. The new approach is sim-
pler and performs better than the other methods in low dimensional problems, since it accepts
all candidate states of the Markov chain, without compromising the target distribution of the
chain. In high-dimensional problems, the new method, together with all other algorithms that
increase the first level acceptance rate, has a similar performance as the component-wise M-H
algorithm, which was originally proposed for subset simulation. The component-wise M-H with
delayed rejection at the second acceptance level provides better estimates at the expense of addi-
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tional limit-state function evaluations. Finally, an adaptive procedure that adjusts the parameter
of either the component-wise M-H or the conditional sampling method based on the chain ac-
ceptance rate provides better estimates without the need for further limit-state function evalua-

tions.
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Figure 7: Coefficient of variation of the probability estimates by the (a) component-wise M-H and the (b)
conditional sampling method and their optimal scaling variants.
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ABSTRACT: A new strategy for in-situ testing of reinforced concrete structures is presented. Its
ultimate goal is to provide real-time information about the structural behavior during the test.
Statistical results of structural tests are employed in order to get general information about mod-
el statistics so that parameters uncertainties will be represented by a set of mutually consistent
probability distributions. The proposed procedure relies upon a probabilistic formulation and
takes advantage of the Bayesian Network theory to account for structural and design uncertain-
ties.

1 INTRODUCTION

The structural characterization of existing buildings cannot neglect an accurate experimental test
schedule in order to get statistical information about geometrical and constitutive features.
Many reliable techniques of identification and updating are able to properly define a structural
model, however, their employment in common practice usually deals with procedural draw-
backs. This work aims to summarize an identification procedure which will be employed in a
large structural test campaign in southern Italy focused on the characterization of more than 50
school buildings and on the evaluation of their structural reliability. It is important to emphasize
that the structural problem is strictly interconnected with bureaucratic issues so that the test
choice and scheduling must consider several commitments. The structures to be identified have
been built between '70 and '80; thus original plans and material tests are not available and the
buildings have never been validated; moreover neither building code nor seismic rules were en-
forced at the construction time-. Moreover, the public purchaser and current rules also fix some
requirements about the test campaign: i) it has to be as cheap as possible; ii) it should mainly
consist in “traditional” tests (static load tests among all); iii) it has to ensure the complete struc-
tural functionality while the tests are carried out. In this sense, the proposed strategy aims to be
a fair compromise between usual technical practice and law requirements.

The employment of Bayesian Networks is very profitable in order to relate different kinds of
structural tests and to properly consider the knowledge confidence. An effective idealization of
the structural model consists in defining a domain containing geometrical and mechanical prop-
erties, a set of external loads and a set of responses. Each parameter should be characterized in a
probabilistic way through a priori probability distributions; note that some of the parameter dis-
tributions will try to describe design choices based on historical common practice. Then, a non-
linear finite element analysis is run in order to simulate the tests and to get the structural re-
sponses probability distributions. It is well known how the Bayesian Network links parental
random variables (i.e. the model parameters) with child ones (i.e. the structural responses).
Thus, while the tests are carried out, Bayesian inference updates the structural model probabilis-
tic description using the structural responses as evidences.

This leads to interesting results. The updating of structural parameters provides a probabilis-
tic model whose distributions take into account for the real knowledge provided by the experi-
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mental data. In this sense, the procedure is more accurate than the ones suggested by European
and Italian codes. Furthermore, while the Bayesian Network will pay a great computational de-
mand before the test execution, it also provides results in real time during the test. This is a very
important feature since structural safety could be compromised by high test loads; the Bayesian
Network is able to highlight potential induced disorders before that the structure will be fatally
damaged.

More considerations about the strategy will be made in the closure section of this work. Be-
forehand, the structural model description is explained in chapter 2; thereafter, chapter 3 gives a
brief description of the employed algorithm for non-linear analysis. Then, chapter 4 summarizes
the Bayesian Network definitions for two structural applications whose results are also provided
and commented.

2 STRUCTURAL MODEL RANDOMNESS

As written before, a simple though effective idealization of a structure consists in defining a
domain containing geometrical and mechanical properties, a set of external loads and a set of re-
sponses. Accordingly to the Bayesian Network theory, each parameter is defined by a marginal
or conditional probability density function (PDF); while the parent distributions are defined by
random models, the mutual relationship between parents and children is get by a Monte Carlo
simulation laying on a non-linear FEM analysis. Several models are available for constitutive
and geometrical properties so that their selection depends on the required accuracy and the
available information. So far, a limited set of parameters has been chosen. The most obvious pa-
rameters are the steel and concrete yield stresses and stiffness, whereas the parameter that is ex-
pected to have high influence is the reinforcement bars quantity. A Gaussian noise with 5%
c.0.v. has been included in order to consider the discrepancy between measurements and numer-
ical prediction. In order to test the procedure effectiveness, no more geometrical randomness is
considered since those parameters provide a sufficiently accurate description.

2.1 Concrete parameters

The concrete constitutive model has been defined by the ultimate strength accordingly to Kent
and Park (1971). Its probabilistic definition is based on a statistic study about Italian buildings,
Cristofaro (2009), where a wide test campaign is presented. The tested buildings have been split
in four classes depending on the building age. Each class provides the mean and the standard
deviation of a normally distributed variable which defines the concrete yield stress of a standard
concrete specimen.

Table 1. Concrete yield stress parameters.

Building year mean coefficient of variation
MPa
‘50 11.2 32%
"60 153 40%
‘70 19.7 51%
"80 24.1 28%

The reason of this choice is to avoid the dependence of usual probabilistic models on the con-
crete class, since it is usually unknown. On the contrary, the ratio F; between the specimen and
structural strength has been defined as a normal variable with mean 1.06 and c.o.v. 14%, ac-
cordingly to Melchers (2001).

2.2 Steel parameters

While the concrete class is usually concealed, the reinforcement bars specifications are usually
available through waybills. This makes possible to employ the definition provided by Melchers
(2001) where the steel Young modulus is assumed to be lognormal with mean 201GPa and
c.0.v. 3.3% and the yield stress is beta distributed with parameters summarized in Table 2 and
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PDF defined in Equation 1. The steel constitutive model is assumed to be an ideal elasto-plastic
uniaxial relationship without hardening.

E=aY {b=FY
ny(F})zA[ yc ] ( y} (n

c

Table 2. Concrete yield stress parameters.

Class mean cov A B C a b €
MPa

300 310 35% 4106 221 3.82 228 428 200
410 461 38%  7.587 2.02 6.95 372 703 331

At element level, the geometry of reinforcement bars is described in a conventional way.
First, the clement’s cross-section is assumed to be approximately rectangular. Then, the rein-
forcement bars are described by areal percentages rather than by diameters and position. This
latter is defined as the ratio between the area of bars belonging to the same section side and the
total cross-section area. The percentage should be defined for the top, the bottom and the lateral
side of the section. This convention is undoubtedly approximate, but it permits a statistical anal-
ysis of reinforcement geometries by a reasonably limited number of parameters.

This is due the fact that no structural plans are available and also there were no rules enforced
about structural and seismic analysis when the structures of interest were built. Structural mod-
els, load hypothesis and safety criteria were up to the experience and the “design style” of struc-
tural analyzer. Thus, any simulated design could be grossly inaccurate if it does not even try to
guess “design habits and standards™ usually employed in common practice.

The percentage convention is directed to make a catalogue and a statistical analysis of a large
enough set of available structural plans. Specifically, each plan provides global information
such as the ones shown in Figure 1(a). Also, each element is characterized by geometrical pa-
rameters: length and type (beam or column), cross-section height and width, story, reinforce-
ment percentages and spans, see Figure 1(b). '
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Figure 1: (a) Structure geomeirical information; (b) Elements’ geometrical characterization

A statistical analysis of the collected data, based on analogous parameters, provides probabil -
ity distributions of reinforcements’ percentages for the identifying structure. These PDFs consti-
tute the basic knowledge of the probabilistic model; far away to be exhaustive, they provide a
widespread trend about the expected design in order to perform a consistent updating. A rough
data-fitting provides generalized extreme value distributions employed afterwards in the numer-
ical examples. It must be emphasized that designers are prone to cluster congruent Cross sec-
tions in a few typologies; the reinforcements’ design is then ruled by the most stressed section
so that the steel bars configuration is the same for the entire cluster. On the basis of this assump-
tion, the extreme value distribution makes sense. The bars configuration comes out from the
most conservative design among a set referred to the same cross section subjected to several dif-
ferent loads.
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3 STRUCTURAL ANALYSIS: FIBER-FREE INTEGRATION

After that the parameter distributions have been defined, it is necessary to get the conditional
probability distributions of the structural response. This duty has been carried out by a Monte
Carlo simulation and a non linear finite element analysis. Both procedures do not require any
deeper elucidation since ordinary algorithm have been employed. However, an essential de-
scription is required for the integration algorithm at element level.

In order to speed up the structural analysis, a fiber-free algorithm (Marmo and Rosati, 2008)
has been employed in carrying out the integration of the RC constitutive relationship and for the
evaluation of the stiffness mairix of frame cross sections owing to its superior performances
with respect to the fiber integration (Zupan and Saje, 2005).

The geometry of the frame sections is defined by one or more polygonal domains; cross sec-
tions are assumed to obey the Euler-Bernoulli hypothesis whereby the axial strain at a generic
point r=[x y| of the section can be evaluated as £ =€ +g-r, i.e. as sum of the strain at the
origin of the coordinate system e) the curvature (g)and coordinate vectors (r) The material
constitution in the direction of the beam axis associated with each polygonal domain is de-
scribed by means of an uniaxial inelastic stress-strain relationship. The normal stress at point r
is expressed as a function of the strain current value X and of the maximum compressive strain
X ever reached at r. Such assumption is common to most of the stress-strain laws for concrete,
and it can be expressed symbolically as:

0 if £<¢g,
ole.e, )= . (j’" )Eg; (g; ()g’" ) ) if e,<e<e, (2)
oe,) i eze,

The function ¢, is the envelope curve while &, is the residual strain which is generally ex-
pressed solely as a function of the maximum compressive strain. The characteristic vectors of
the normal stress distribution over the beam cross section are the axial force and the bending
moments:

= _[o*(s,gm)dQ; M =[— M, MX]T :J‘cr(e,gm)rdﬂ 3)

Equation (2) shows how different expressions of the stress have to be considered over the
cross section; this naturally suggests to split it into partitions €, characterized by values of &,
so that both the current and the maximum compressive strain are expressed by means of a single
equation of the kind of Equation (2). A suitable manipulation of the constitutive function and
the continuous updating of the partitions lead to the integration of stress resultants section stiff-
ness matrix. Specifically, this latter can be expressed only in terms of integrals at the partitions
vertices. It is important to emphasize that the integrals in Equation 3 can be evaluated in closed
form as long as the employed constitutive laws are furnished with their primitives. It provides
the exact solution for the Euler-Bernoulli beam ensuring a high computational speed.
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Figure 2: General-purpose Bayesian Network

106




4 THE BAYESIAN NETWORKS

The reason of the Bayesian Network employment relies in its skill to relate several random vari-
ables of different natures. A general-purpose Bayesian scheme is provided in Figure 2; it aims to
link together all the possible data get by tests. In this sense, each experimental result properly
contributes to the general knowledge of the structure. This work focuses on the highlighted
nodes since a general purpose test campaign is in progress and a first updating will provide in-
formation about the static load test effectiveness; furthermore, it is possible to choose further
tests on the base of the updated knowledge.
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Figure 3: Shelter structural plan

Two different structures have been analyzed. The first one is a just built reinforced concrete
shelter consisting of a plane shell deck supported by three cantilever beams wedged to a single-
floor three columns frame. The structural plan is shown in Figure 3. The shelter has been tested
by loading the deck using an inflatable water tank set on the deck floor, whose load area is
shown in Figure 4(a). Static load has been linearly increased to the maximum design load (i.e.
4000 N/m®) and vertical displacements at selected locations (U;...Us shown in Figure 4(a)) have
been recorded by dial gauges.
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Figure 4: (a) Shelter load scheme; (b) Bayesian Network

The mechanical parameters have been conveniently defined on the basis of the previously
shown a priori distributions. Mechanical parameters of steel and concrete should be defined as
random field since their values are usually heterogencous. However, it seems reasonable that
concrete uncertainties are negligible over each single casting. In this sense, the construction se-
quence defines individual groups of structural elements where the mechanical parameters are
likely to be constant. In this case, the first casted region includes the columns only whereby the
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second one includes the beams and the shells. Similarly, the steel properties are assumed to be
constant for the bars coming from the same batch. Because the steel reinforcement geometry in
fixed, the purpose is to update the probability distributions of material parameters. The em-
ployed network is schematized in Figure 4(b).
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Figure 5: Shed structural plan (dimensions in meters)

The second monitored structure is a one story reinforced concrete shed whose plans are
shown in figure 5. It is made by seven symmetric frames, each one made by a high beam
wedged to two columns. The top deck is made by a reinforced concrete shell. Static load has
been applicd on the highlighted area up to 5000 N/m?. The test purpose, this time, is to identify
the reinforcement percentages since no plans are available. It is still possible to make some hy-
pothesis about the reinforcement geometry. Because of the structural scheme, it looks believable
that the columns are symmetrically reinforced with the same bars geometry. For this reason, two
random variables are employed in order to define the beam and the column reinforcement per-
centages and five random variables are required for the material properties, i.e. strengths and
stiffness of concrete and steel, and the structure-specimen concrete strength ratio Fa.

Siesl Yigld Stress Distributions Steel Young Modulus Distrbutions
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Figure 6: (a) Shelter steel yield stress PDFs; (b) Shelter steel stiffness PDFs

In order to get the a posteriori probability distributions of the random variables of interest,
the recorded displacements have been set as evidences of the network. The network is updated
as the test goes along and the displacements are recorded. Shelter steel and concrete parameter
distributions are presented respectively in figure 6 and 7. Specifically, the figures show the pos-
terior distributions corresponding to: i) all the displacement records at half load (A.D.H.L.
curves), ii) all the displacement records at full load (A.D.F.L. curves), iii) only the i-th dis-
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placement at full load set as evidences (U, curves). This last case can be useful if we cannot
evaluate the accuracy of the record procedure.
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Figure 7: (a) Shelter beam concrete strength; (b) Shelter column concrete strength PDFs

A first consideration can be drawn for the steel parameters (Figure 6): the updated strength
distribution seems to be independent by the load value while the elastic modulus’ one looks
more sensitive. This makes sense since column steel always remains in the lincar range while
the deck reinforcements attain the yield stress even at half load because of the small thickness.
In case of single displacement set, distributions appear to be bi-modal, in particular for U; or U
this suggests a possible anomalous measurement of the structural response. This consideration is
consistent with the test history because the U, and U, dial gauges went several times from the
shadow to the sunlight before the test was ended.
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Figure 8: (a) Shed beam reinforcement per- (b) Shed column reinforcement percentage PDFs

centage,

Even more interesting are the posterior distributions of column concrete limit stress (Figure
7). In this case, the ADHL distribution differs from the other ones. In this case, the concrete lim-
it stress affects the nonlinear behavior of the frames which does not occur for small loads. The
beam concrete distribution, on the other hand, is affected by geometrical variability. Displace-
ments Us, Uy and Us seem to be inaccurate. This is due the spatial position of the dial gauges:
because the deck and the cantilever beams are quite thin, the farther the dial is from the loaded
area, the less the displacement will be sensitive to the loads and the mechanical parameters.
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The Shed structure provides information of both material parameters and reinforcement per-
centage. Figure 8 shows beam and column updated distributions. The mode looks to translate
while the test is carried out trending to 3%. Even if the difference between the modes looks to
be negligible, note that a 0.5% of difference corresponds to almost four 20mm bars. In this
sense, this updating provides useful information in order to guess the reinforcement geometry.
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Figure 9: Probability of permanent damage

Even more interesting is the evolution of the permanent damage probability which is shown
in Figure 9. Before the test was started, a safety threshold had been set. Its purpose is to avoid
permanent damages in the structure due to the static load test. The Shelter structure presents a
peak at % of the maximum load applied. This can be due to the initial sliding between steel bars
and the concrete core. In this case, the recorded displacements at the beginning of the test results
higher than the simulated ones which, on the contrary, increase smoothly. The Shed does not
show the same behavior. The reason could be related to the greater dimensions and to the fact
that its deck has been subjected to high loads so that the steel bars already toothed the concrete.

5 CONCLUSIONS AND FURTHER WORK

A strategy for the probabilistic characterization of reinforced concrete structures during experi-
mental tests is presented. Focusing on the employment of static load tests, the procedure pro-
vides probability distributions of mechanical and geometrical parameters, trying to overcome
the lack of knowledge about the specific structural design. Not less important, the fact that a
probabilistic formulations properly considers the contribution of each single test to the global
knowledge. The particular formulation is specific for in-field applications so that preliminary
results can be obtained while the test is carried out. This makes possible to make changes to the
test schedule and, above all, to get a preliminary evaluation of the structural reliability so that
damage induced by the load test can be avoided. Research developments can be oriented to the
interaction in a larger Bayesian network with other kinds of structural tests and to properly con-
sider the presence of non-structural elements.
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ABSTRACT: This paper describes a probabilistic approach to calculate the reliability of adhe-
sive bonded composite stepped lap joints loaded in fatigue using three-dimensional finite ele-
ment analysis (FEA). A method for progressive damage modelling is used to assess fatigue
damage accumulation and residual strength under fully reversed cyclic loading based on stiff-
ness/strength degradation. The FEA simulations are conducted using the commercial FEA code
ANSYS 12.1. A design equation for fatigue failure of wind turbine blades is chosen based on
recommendations given in the wind turbine standard IEC 61400-1, where partial safety factors
are introduced together with characteristic values. Asymptotic sampling is used to estimate the
reliability with support points generated by randomized Sobol sequences. The predicted reliabil-
ity level is compared with the implicitly required target reliability level defined by the wind tur-
bine standard IEC 61400-1. Finally, an approach for the assessment of the reliability of adhesive
bonded composite stepped lap joints loaded in fatigue is presented. The introduced methodology
can be applied in the same way to calculate the reliability level of wind turbine blade compo-

nents loaded in fatigue.

1 INTRODUCTION

Adhesive bonded joints are being extensively and increasingly used for a large variety of appli-
cations in the automotive, aerospace, civil engineering, marine and wind turbine industries to
mention a few [1]. Adhesive bonded joints are gaining preference over mechanical fastening
techniques because of their almost negligible weight penalty [2]. In the design of stepped lap
adhesive joints, scattering and physical as well as subjective uncertainties including neglect,
mistakes, incorrect modelling and manufacturing errors must be considered when designing for
materials, stacking sequence, dimensions, etc.

There is a lack of reliable methodologies for assessing the fatigue life and residual strength
of composite structures. To predict residual strengthystiffness degradation of a composite lami-
nate, a number of models have been suggested [3, 4]. So far, fundamental damage mechanisms
that occur in composites during fatigue, such as matrix cracking, delamination, fiber failure,
etc., have not been completely taken into account. Several researchers have studied the reliabil-
ity assessment of wind turbine blades in the fatigue limit state using a linear SN-curve in com-
bination with fatigue life diagrams accounting for the mean load effects [S] and uncertainties re-
lated to the fatigue loading [6]. To perform a detailed reliability analysis of the blade and its
components such as adhesive joints and various substructures, three-dimensional finite element
modelling is necessary.

In the present article, the method of progressive damage modelling [3] is used to assess the
reliability level of stepped lap composite joint loaded in fatigue under T-C fatigue (R =-1). A
set of seven 3-D polynomial stress-based failure criteria is used to detect seven failure modes.
Specifically, for detecting matrix tensile and compressive cracking, fiber compressive failure
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and fiber-matrix shear-out, a set of 3-D Hashin-type failure criteria are used. The FEA simula-
tions are conducted using the commercial FEA code ANSYS 12.1. A design equation for fatigue
failure of wind turbine blades exposed to out of plane bending moments is chosen, where partial
safety factors are introduced together with characteristic values. Asymptotic sampling is used to
estimate the reliability with support points generated by randomized Sobol sequences,

2 STEPPED LAP COMPOSITE JOINT

Fig. 1 shows a generic model of the stepped lap composite joint, which is considered in this
study. The considered stepped lap joint includes only two steps, representative for typical joint
configurations used for ¢.g. wind turbine blade main laminates with respect to geometry, joint
overlap steps, adhesive layer thicknesses and material composition. The constituent materials
assumed are epoxy adhesive, Fibredux-HTA/6376 plies/layers as shown in Tables 1 and 2 based
on [3, 7]. Table 3 shows a stochastic model for the geometrical properties. The loading condi-
tion imposed is a prescribed horizontal displacement applied at the right side (the loading is fur-
ther described in section 4), and a simple support boundary condition is imposed for the left side
of the joint.

Table 1. Stochastic variables for the epoxy adhesive [3, 7].

Parameter Mean cov Distribution Characteristic value
Young’s modulus, E, (GPa) 221 10.0% Lognormal 2.21

Poisson’s ratio, v, 0.3 18.0% Lognormal 0.3

Tensile strength, S, (MPa) 80 10.6% Weibull 37 (5% quantile)

Table 2. Stochastic variables: Elastic coefficients and strengths for graphite/epoxy[3, 7.

Parameter Mean cov Distribution Characteristic value(quantile)
E, (GPa) 39 10.6% Lognormal 39

E, (GPa) 14.5 13.6% Lognormal 14.5

E; (GPa) 9.8 13.6% Lognormal 9.8

Viz 0.29 18.0% Lognormal 0.29

Vis 0.07 18.0% Lognormal 0.07

Vaz 0.29 18.0% Lognormal 0.29

G5 (GPa) 4.2 10.7% Lognormal 4.2

G5 (GPa) 4.2 10.7% Lognormal 4.2

G2; (GPa) 2.7 10.7% Lognormal 2.7
Sir(MPa) 779 13.8% Normal 602 (5%)
Soor (MPa) 54 10.4% Weibull 44 (5%)
Sisr (MPa) 54 10.4% Weibull 44 (5%)
Siic (MPa) 526 14.3% Normal 402 (5%)
Syc (MPa) 165 11.2% Weibull 131 (5%)
Ss30 (MPa) 165 11.2% Weibull 131 (5%)
ti2(MPa) 36 10.6% Weibull 45 (5%)
t3(MPa) 56 10.6% Weibull 45 (5%)
13 (MPa) 56 10.6% Weibull 45(5%)
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Fig. 1. Geometry of adhesive stepped lap joint, the thickness of the adhesive is
exaggerated for illustration purposes.

Fig. 2 shows the FEA model and the adopted meshing. A macro is used to generate a parame-
tric model. All the above geometry parameters are obtained based on realisations of the stochastic
variables in Table 1. The commercial FE code ANSYS version 12.1 has been used for all the FE
calculations. Solid shell elements (SOLSH190) are used for the composite part, and solid elements
with Enhanced Assumed Strain formulation (SOLID185) are used for the adhesive layers with
three displacement DOFs per node.

Fig. 2. Element distribution of the joint.

Table 3. Stochastic variables for the stepped lap joint geometry.

Parameter Mean cov Distribution Characteristic value
Lamina thickness, t; (mm) 0.125 10% Normal 0.125
Joint width (mm) 5.00 10% Normal 5.00
Adhesive thickness, t, (mm) 0.125 10% Normal 0.125
(migiheswe bondline length, ¢, 200 10% Normal 2.00
Step length, $; (mm) 40.0 10% Normal 40.0
Initial length, Z; (mm) 70.0 10% Normal 70.0
Lateral length L; (mm) 70.0 10% Normal 70.0
Fibre angles - 10% Normal -
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3 ASYMPTOTIC SAMPLING

The basic idea of the Asymptotic Sampling technique proposed by Bucher [8] is to utilize the
asymptotic behaviour of the reliability index /£ and the probability of failure in Gaussian space as
the standard deviation of the variables and therefore the failure probability approaches zero [19].

B
= 1
B Af+f 1

The parameters A and B are determined by curve fitting based on reliability indices £ determined
using an appropriate number of supporting points, /.

4 FATIGUE FAILURE ANALYSIS

A set of seven 3-D polynomial stress-based failure criteria is used to detect seven failure modes.
Specifically, for detecting matrix tensile and compressive cracking, fiber compressive failure and
fiber-matrix shear-out, a set of 3-D Hashin-type, Max-Stress criterion for fiber failure, and for de-
lamination (equations 7 and 8) the Ye-delamination criterion is used as shown in Table 4. It
should be noted that the condition in equation (6) is always dominant and will be fulfilled before
equation (5) except for the case of zero shear stress when the two conditions will result in identical
failure load estimates.

Table 4. Fatigue failure criteria

Failure mode Failure Criterion
2 2 2
Matrix tensile cracking, for o, >0 U_J:_’ g G’;’ + O-‘;f >1 @)
Yr S Ly
3 2 2
Matrix compressive cracking, for o, <0 ) s Oy i Tz >1 3
7|t |t 5r 3)
G xy zy
Fiber tensile failure o >0 O——”, =1
F )
T
. L Ty
Fiber compressive failure o, <0 [—F] >1 (5)
c
2 2 2
Fiber-matrix shear out, for o, <0 e + Ty 5 Ty s 6
F SF gF (6)
8 Xy zy
2 2 2
Delamination in tension o,, >0 T2z + O-i o Tz >1
ZF gF SF )
i xp zy
2 2 2
Delamination in compression o,.z0 Dz 4 T + Ty >1
Z sf ol &
G xy zy
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5 GRADUAL MATERIAL PROPERTY DEGRADATION ON ALL PLIES

Gradual degradation of the composite material is due to cyclic loading and it is applied on the ba-
sis of material stiffness and strength [3]. A linear equation was proposed [4] for modelling the
stiffness degradation for each stress level as follows:

Ef(n)= {G” + 1}«:;‘2
ir Nﬁ) by
Here E,f and E; are the residual stiffness as a function of number of cycles and the static stiff-
ness, respectively, 7 is the number of cycles, Ny, is the number of cycles to failure, and G is an ex-
perimental fitting parameter.
The general form of the polynomials in terms of normalized residual strength and normalized
number of cycles (n/N;) is [4]:

n 1 .
I (n)= [B(T)z +C(—) +1}T5

S Ji
where 7, and Tff are the residual and static strengths, respectively; and B, C experimental fitting
parameters. It should be noted that, adhesive propertics remain constants during calculations.
Moreover, the model uncertainties can be estimated on basis of test results and corresponding
model predictions with deterministic realizations of the stochastic variables in the model accord-
ing to the test plan using a procedure as described in e.g. Eurocode EN 1990 [10]. Due to lack of
available test results, it is not possible to estimate the model uncertainty in this paper.

6 SUDDEN DEGRADATION

The failure approach is based on element failure. When failure is predicted in a composite layer by
the failure criteria indicated in part 4, its elastic properties and strengths are degraded by imple-
menting an appropriate sudden degradation rule [3].

Table 5. Sudden material properties degradation rules [3].

Failure mode Failure Criterion
Matrix tensile cracking Ej =02*E,,, Eg, ={.2* E,W,E)‘i =02*E, (9)
Matrix compressive cracking E}‘i =i0> E_W,E;‘;, =04 *EDJ,E_fZ =04% E}E (10)
Fiber tensile failure EZ =0.07 ! (11)
Fiber compressive failure B = 0.14*E (12)
Delamination in tension or d pd pd _
compression oo By By =0 (13)
7 LOAD

A fully reversed cyclic loading (R=-1) is applied to the model and in each cycle, only the ¢, ten-
sile load is applied in the joint, the stresses are calculated by the FE model and a check for possi-
ble failure modes is performed. Then, based on the elastic solution the compressive stresses can be

obtained:
(14)
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A design equation is formulated for the situation where it is assumed that the wind turbine is oper-
ational. The design equation is written as:

G=1le_ ) 5(1)=0 (15)

n/m

where #,, 7, and y, are partial safety factors, see Table (6). S, is the equivalent stress which is
obtained from the failure criteria, and §_ is characteristic load carrying capacity.

Table (6). Partial safety factors according to IEC 61400-1 [9].

Partial Safety Factor Ultimate
% — Consequences of failure 1.00
¥ — Material properties 1.30
¥ — Load 1.00

To obtain the characteristic load, first the 5% quantile of the composite layers strength and adhe-
sive is calculated based on the characteristic strength parameters in Table 2 and 3. The maximum
allowable characteristic load is then obtained through FEA by calculating S,(Z.). When L. is ob-
tained, it is used that it is a mean value in the distribution for the equivalent fatigue load, and L; is
assumed to be modelled by a Weibull distribution with COV = 15% [28]. Further, a load model
relevant for wind turbine blades is applied. The load is described in terms of a number of stochas-
tic variables:

L=LX X oy X 0 X oo (16)
The limit state equation corresponding to the design equation Eq. (15) is:
g(n) = XpS(N ) =S, (L,n) (17)
Table (7). Stochastic variables for the model and physical uncertainty related to the loading [7].

Variable Description Distribution Mean cov Characteristic value
Xz Load carrying capacity Lognormal 1 5% X
Xy Limited wind data Lognormal 1 10% 2.
KXin Dynamic response Lognormal 1 5% Kayn
Koxn Exposure Lognormal 1 10% Kexp
P Lift/Drag coefficients Gumbel 1 10% Xoso

8 METHODOLOGY AND APPROACH

The FEA code ANSYS 12.1 is run in batch mode from Matlab using geometric parameters, ma-
terial properties and loads simulated from the distribution functions describing the stochastic va-
riables. Each simulated parameter is read by ANSYS using a macro file, the number of cycles is
increased and after the numerical processing a post processing is carried out. The stresses and
strains arc selected and imported to Matlab. A failure analysis is done using Hashin failure crite-
rion, and finally the number of failures is calculated. This procedure is conducted for 1280 simula-
tions using the Asymptotic Sampling technique, and finally the probability of failure ( ;) is ob-
tained. The reliability index, £ is obtained from:

p=-07(P,) (18)

where @ is the standard Normal distribution function. The following flowchart explains the me-
thodology and approach.

9 RESULTS AND DISCUSSIONS

IEC-61400-1 [9] standard requires a minimum annual reliability index for structural wind turbine
component equal to 3.1. To reduce the computational time and present a more efficient technique
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with respect to FEA based evaluation of the limit state equations, Asymptotic Sampling was used.
In conducting this, 5 support points were chosen for different values of the scaling factor f, and
256 iterations were carried out for each support point. This means that 1280 simulations were per-
formed to obtain the results. For the curve fitting, a set of supporting points and reliability indices
associated with the supporting points is constructed, and using Eq. (2) the constants A and B are
determined (see Fig. 4). The results are presented in Table 9 which show the reliability level of the
joint loaded in fatigue is satisfactory.
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Fig.4. Asymptotic Sampling results obtained using the Hashin criterion based on 5 supporting points.
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Table 9. Predicted probability of failure based on 1280 simulations (Asymptotic Sampling method).

Method Probability of failure Reliability index Computational time
Asymptotic Sampling 0.0023 2.83 ~2 days
10 CONCLUSIONS

A probabilistic model for the reliability analysis of adhesive bonded composite stepped lap joints
loaded in fatigue has been proposed, in which the influence of variations in the geometrical, phys-
ical, strength parameters and external loading over the joint have been included. A reliability as-
sessment for composite adhesive stepped Iap joints was presented using stochastic models for the
uncertain parameters, and Asymptotic Sampling techniques based on the use of a 3D FEA model
were used to estimate the probability of failure. In summary, a simple and novel approach for the
assessment of the reliability and probability of failure for adhesive bonded composite stepped lap
joints has been presented, and it was illustrated how partial safety factors for semi-probabilistic
design can be calibrated.
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ABSTRACT: Contemporary buildings must be technically complex due to a need for assuring
a proper level of safety. There are numerous risks that buildings and building users are subject
to. Building regulations require the application of appropriate countermeasures to mitigate the
possible effects of risks. The countermeasures are delivered by material, structural and mainten-
ance solutions utilised in a building. Space limitations and limited financial resources force de-
cision makers to search for cost-effective solutions which are capable of mitigating the effects
of different risks concurrently. Different risks can interrelate with each other. These interactions
can thus influence risk-aware effectiveness of solutions applied in buildings. The paper deals
with an approach which facilitates the identification of interrelations between risks. It delivers
both qualitative and quantitative information about these interrelations. Such information can be
incorporated into effective building solution alternative selection procedures.

1 INTRODUCTION
1.1 Risks for buildings and building users

Fire risk for buildings and building users involves various safety measures. Fire safety risk is
not, however, the only one kind of risk buildings and building users are subject to. A concise de-
finition of considered risks is included in the building regulations together with a description of
appropriate countermeasures. There are a lot of competitive fire risk countermeasures available.
The same measures can be applied for addressing different risks. Conscious selection of tech-
nological, material and maintenance building solutions can therefore result in efficient address-
ing of several risks at once. Such selection will deliver benefits with regard to the simplification
of design, construction and maintenance of buildings.

Detailed knowledge about the interdependence of risks facilitates therefore a selection of risk
countermeasures. Such knowledge cannot be acquired successfully without including a realistic,
multi-dimensional nature of potential solutions and an imprecise nature of available informa-
tion. A suitable approach for knowledge acquisition is presented in the paper.

1.2 Applied approach

The proposed approach is devoted to the identification of cause-effect chain structure which ex-
presses interdependence of general risks a building and occupants are subject to. DEMATEL
(DEcision MAking Trial and Evaluation Laboratory) proposed by Gabus & Fontela (1972) is
utilised with this regard. DEMATEL maturity and flexibility facilitates computational imple-
mentation and automation of the approach. A concept of multi-dimensional overall influence
map is applied for modelling interrelation between risks. Feedback-aware digraph structures are
utilised for the expression of map components. -

119



2 DEMATEL
2.1 Origin and applications

DEMATEL is a decision analysis method which is capable of identification of a cause-effect
chain structure of considered problems. It was founded to facilitate the identification of inter-
relations between contemporary economic, social and environmental world problems possible
(Fontela & Gabus 1976). It was hoped that the identification of the inter-relations would help in an
effective solution of the problems. The method became soon popular in the world community
of researchers.

DEMATEL is rather old. It gained nevertheless even more popularity at the turn of the centu-
ries. Advantages offered by the method favoured its rapid dissemination. Several improvements
were also introduced into the method to adapt it to diverse applications and utilisation areas.

2.2 DEMATEL basics

A direct influence comprises the main concept of the method. The concept is applied for the ex-
pression of a cause-effect relation between two objects. The intensity of direct influence is ex-
pressed by a dedicated evaluation scale. An order scale is usually applied with this regard.
The lowest scale level is 0 and means a lack of direct influence. The highest level N expresses
the extreme direct influence. Intermediate levels from 1 to N—1 correspond to stepwise increase
in direct influence. A number of applied scale levels depends on a specific need. For example,
the original DEMATEL scale consists of 5 levels (N=4). Its intermediate levels express:

1 - a slight influence of the first object on the second object,

2 - a noticeable influence of the first object on the second one,

3 - a big influence of the first object on the second one.

It is worth mentioning that feedback i.e. the influence of both compared objects on each other
can be included. And no influence of a particular object on itself is assumed.

A complete set of relation evaluations for a group of » objects therefore consists of (n—1)-»
judgments. An influence map is applied for the expression of direct influence. A digraph called
a direct influence graph X(V,Ex) is applied for map implementation. Graph vertices V" denote
objects and graph arcs Ex express the influence between objects. The digraph is represented by
an nxn quadratic matrix X called a matrix of direct influence. A matrix component located in
the i-th row and the j-th column expresses the effect of the i-th object on the j-th object (Z,j =1,
2.): .

The overall influence of objects comes from both explicit - direct and implicit - indirect ef-
fects of objects. The structure of overall influence is described by a digraph called a total influ-
ence graph T(V,E7). It is represented by an mxn quadratic matrix called a matrix of total influ-
ence T:

T=X--X)", (1)
where X = a normalised matrix of direct influence:
X= % -X, (2)

where A = the maximal row-wise and column-wise sum of matrix X components:

# I
A= max{maxey, maxeij } 3)
i 7= i

i=l

Matrix X consists therefore of components which are equal to 0 at least and equal to 1 at most.
Row-wise or/and column-wise sums of matrix components are at most equal to 1.

DEMATEL analysis results can be presented in several ways. Total influence graph T(V, Et)
provides the primary means for the presentation of DEMATEL outcomes. Two indices, namely
the prominence s* and the relation s~ are applied to express the overall nature of objects.
The prominence expresses the overall importance of an object during the identification of the
nature of considered objects. The relation indicates causal or effect nature of considered objects.
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Values of both indices come from the sum of T components from the i-th row (R;) and from the
i-th column (C):

n i
st=R+C, s =R-C, R=%t, CEYI €]
=1 j=1
A positive s; value confirms the causal nature of the object and a negative value - the effect na-
ture of the object. Zero and close to zero value denotes a rather neutral object role.
A Resultant net overall influence structure can be also presented. Net overall influence is ob-
tained for each pair of objects using the following formula:

An = t;—t; fort; >t )
# 0 otherwise.

A net total influence map is expressed by a net total influence digraph N(V, Ey). Arcs Ey indi-
cate the direction and resultant intensity of the overall influence between two objects.

A total influence map can be too complex. An influence threshold ¢ is introduced to facilitate
the presentation of DEMATEL analysis outcomes. The application of the threshold leans the total
influence map. Arcs which correspond to the total influence intensity lower than the threshold are
removed from a total influence digraph. A reduced influence map is thus obtained. It is expressed
by a reduced total influence matrix T :

_ t, fort =9,
i =l for> (©)
Y |0 otherwise

DEMATEL is based on expert opinions. It is capable of including group opinions. Direct influ-
ence matrices delivered by m independent experts are utilised for opinion aggregation. A simple
arithmetic average formula is applied to obtain an average direct influence matrix X:

X=1 f}x“’ (7

where X = a direct influence matrix derived by the i-th expert.

Several useful extensions have been incorporated into original DEMATEL methodology.
The most interesting improvements address imprecise and vague data e.g. linguistic variables
are applied for expression of the fuzzy evaluation scale levels (Lin & Wu 2004). The levels are
usually expressed by Triangular Fuzzy Numbers, TFNs (Fig.1).

A sample 4-level linguistic scale is presented in Figure 1 (N means no influence scale level,
L -low influence, H - high influence, S - strong influence, a - a TFN membership value,

%, - TEN evaluation of i-th object influence on the j-th object influence).

a o
A A
N L
1 1 H &
i Ly
0 1 m u 0 02505 075 1
i i if

Figure 1: A triangle fuzzy number concept and a sample linguistic DEMATEL evaluation scale

The application of TFNs requires the appropriate accommodation of DEMATEL calculation
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formulae. A fuzzy direct relation matrix X is usually normalised by means of a maximal row-
-wise sum of upper TFN limit parameters (i = 1, 2...n):

X=1®X, i=max)u, (®)
H J:]
The components of fuzzy average direct influence matrix are defined as follows (i, = 1, 2...n):
R i | 9
X [ Vg J )

A fuzzy direct influence is usually expressed using 3 crisp matrices X,;, X, and X, which

correspond to the lower limit, medium value and upper limit TFN parameters respectively. Such
expression of influence facilitates the derivation of fuzzy total influence map. Separate
processing of crisp matrices due to Equation 7 is utilised for obtaining crisp parameters of TFN

outcomes:

T=X,-0-X)", T,=X,-0-X,)". T=X (01-X). (10)
Fuzzy total influence matrix components T are defined as follows (L,j=1,2.n)
i = (f:gﬁmysfug) (11)
TEN values for both the prominence and the relation are described by the formulae:
5'=ReC, §=RK-C, (12)

where R, = row-wise and C, = column-wise sum of T matrix components: (i = 1, 2..n):

R=7,07,0.07, C(=i,0%0.07, (13)
Defuzzification of fuzzy outcomes is necessary to enable the presentation of DEMATEL out-
comes. The center of gravity technique is applied to obtain crisp values corresponding to TFN

values. Let's assume the following general representation for TFN;
z=(1,m,u), (14)
The following formula therefore expresses an equivalent crisp value z:

u2+2-m~(1—u)—l
sl (15)

Z=m+

3 SAMPLE ANALYSIS
3.1 Tentative assumptions

Current Polish building regulations require buildings to be erected, equipped and operated in
the ways which ensure proper reduction of unfavorable influence of different factors. The regu-
lations also provide information about critical measures which assure an appropriate level
of safety to a building and occupants. The following safety dimensions are included:

e general structural safety (SS),

o fire safety (FS),

e occupational safety (OS),

e hygienic and health safety (HH).
The dimensions correspond to different risks a building and building users are subject to. They
can be also further divided into subcategories. For example, a successful implementation of fire
safety measures satisfies the requirements of structural capacity, limits smoke and fire spread
and provides proper evacuation means for occupants.
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A proper level of safety should be ensured by building design (D), construction (C), occupa-
tion and building maintenance (U) activities. These activities are of a man controllable nature.
Effects of these activities influence safety level for a building and occupants. The resulting risks
for example pertain to imperfect or defective design and constructional solutions, the applica-
tion of improper building occupation or maintenance modes etc. There are also essential acci-
dental factors which are considered independent on decisions of parties involved in building de-
sign, erection and occupation. It seems that accidental factors should be further divided into 2
separate groups due to their origins:

e inherent accidental factors I,

e external accidental factors E.
Inherent factors can relate to the risks of possible defects of building compoenents. External fac-
tors correspond to the risks of unfavorable influence of the surrounding environment which can
result from fire, flood, hurricane, air and water pollution, transportation means impact etc.

A compound nature of building design, constructional and maintenance solutions, corres-
ponding building regulations' requirements and a commonly recognised paradigm of sustaina-
ble development inevitably leads to inter-relations between general risks. The identification
of such relations is therefore worth a thorough investigation.

A direct influence is applied for the expression of cause-effect relations between general risks
and their effects. A 4-level linguistic fuzzy judgement scale is applied to address the intensity
of the direct influence of general risk factors on other risk factors (Fig.1).

Reliable investigation requires including multi-dimensionality of safety measures induced
by building regulations. All mentioned safety dimensions are therefore considered during
the identification of a risk influence map. The opinions of 4 experts are applied for the evalua-
tion of the influence of general risks on each other. Each expert is responsible for addressing a
single safety dimension he or she is the best accustomed to. The evaluations provided by sepa-

rate experts X%, X, X9 X*9 are then combined:
- B[& 0™ 0 X 0 ) (16)

Aggregated judgements are processed due to Equations 8-15. Data processing results in the
structure of overall influence.

3.2 Structural Safety Dimension

The opinions of the expert appointed to the evaluation of a direct influence with regard to struc-
tural safety merits are applied for the presentation of data acquirement principles. The expert
decides that: .

o design-related risks D influence construction workmanship-related risks C at low level
L and occupational risks U at high level H, internal and external accidental risks I and
E, are not influenced at all (N evaluation scale level) by D risks,

e construction workmanship-related risks influence design-related risks at high level H,
occupational risks at the highest possible level S, inherent accidental risks at high level
H and external accidental risks at low level L,

e occupational risks influence design-related and construction workmanship-related risks
at high level H, inherent and external accidental risks at low level L,

e inherent accidental risks influence design-related risks and construction workmanship-
-related risks at low level L, occupational risks and external accidental risks aren't in-
fluenced (N level),

e external accidental risks influence design-related risks at low level L and construction
workmanship-related risks at high level H, occupational risks at low level L and inhe-
rent accidental risks aren't influenced (N).

Structural safety-related evaluations are presented in Table 1. A complete set of evaluations

makes up a direct influence matrix X% given in Equation 17. It is worth noticing that due to
general DEMATEL rule general risks do not influence themselves at all. A zero TEN value

0=(0, 0, 0) is therefore utilised for the expression of the risk influence in this case.
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Table 1. A complete set of general risk influence evaluations (the structural safety case)

Rsk DCUI E

D LHNN
¢ H= § HL
U HH-LL
I LLN- N
E LHLN -
0 L H NN
H O S H L
X=lg H 0 L L an
L LNGON
L HL N 0
The TEN direct influence matrix looks therefore as follows:
(000) (0:4>2 ‘11112 4) (0 0’4) (0 0’4)
o |GED 000 GiD D 0L
X6 = }tEZ) (4 2? 4 (0,0,0) (0’4’2) (0’4’2 : (18)

(0:45 2) (0>4s 2 (0 O:Z) (0:0=0) (0’0’ 4)
03,3 (.39 03,9 (083 (0,0.0)

The matrix corresponds to a direct influence map. Direct influence maps based on the opi-
nions of all appointed experts are presented in Figure 2. Different line styles are applied to ex-
press diversified direct influence intensity. N level of direct influence is denoted by a dotted
line, L level - by a dashed line, H level - by a solid line and S level - by a bold line.

Figure 2: Assumed direct influence maps for general risks obtained for different dimensions

The application of the formula given in Equation 16 makes obtaining an aggregated matrix
of a direct influence X possible. The application of formulae given in Equations 8-15 results in
fuzzy (57,5 ) and crisp values (s*, s7) of the indices and a total influence matrix T. An average
value of crisp total influence matrix T components is applied for total influence map leaning:

a‘:f.zz:jj. (19)
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The overall influence structure is finally presented in Figure 3. A reduced total influence map,
a net total influence map and the prominence vs. the relation graph facilitate the expression
of the structure. Line patterns correspond to the strength of overall influence and net overall in-
fluence. A bold line, a solid line, a dashed line and a dotted line address the intensity of the
overall and net overall influence in a descending order.

An the prominence vs. the relation

0.75

0.5

0.25

m-—-c 0o
|0 % ~

the relation
(=}

-0.25

05 | ; ; %

-0.75
275 3 3.25 35 3.75

the prominence

Figure 3: Overall structure of total influence

The obtained results confirm that construction workmanship-related risks C comprise
the primary causes. They influence other risks apart from external accidental risks. Occupational
risks are influenced at most. External accidental risks E are the secondary causes. They influ-
ence design-related risks, occupational risks and even construction workmanship-related risks.
Occupational risks are influenced at most.

Inherent risks I comprise causes rather than effects. They influence occupational risks
at most. A net total influence map reveals a resulting influence of inherent accidental risks on
external accidental and design-related risks.

The remaining risks are effects. Occupational risks are the most evident effects. They influ-
ence design risks only and are influenced by other risks. Design-related risks influence construc-
tion wormanship-related risks only and are influenced by other risks besides inherent accidental
risks.

There exists a considerable overall influence feedback between:

e construction workmanship-related risks C and external accidental risks E,
e construction workmanship-related risks and design-related risks,
e design-related risks and occupational risks.

A net total influence map confirms also the presence of an indirect overall influence feed-
back between construction workmanship-related risks, inherent and external accidental risks.

The obtained results confirm that construction workmanship-related risks C influence other
risks. They correspond to man-controllable risks. Their influence should be therefore limited
to minimise the influence on and of other risks. The proper preparation and control of building
erection activities thus comprise the most successful factor with regard to the safety of a build-
ing and its occupants. Other influencing risks i.e. accidental risks I and E are of uncontrollable
nature. Their unfavourable influence is therefore unlikely to be successfully limited.

Revealed feedback between construction workmanship risks and design risks indicates
the possibility of improvement in safety thanks to the appropriate co-ordination of design and
construction activities and their effects. Revealed feedback between construction workmanship
risks and inherent accidental risks suggests the additional improvement in the safety for a build-
ing and its occupants. For example, such improvements can be introduced by extremely cau-
tious selection of contractors, technical means, building components and suppliers.
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4  CONCLUSIONS

DEMATEL is a well established yet not widely recognised method which facilitates a reliable
identification of cause-effect chains. Included results confirm the usability of DEMATEL-based
approach for the clarification of multi-dimensional relations between general risks which influ-
ence the safety of a building and its occupants. The availability of such information facilitates
both the coordination of different safety-oriented efforts and proper trade-offs during a building
design, construction and operation.

The identified structure of overall influence can be also utilised for deriving quantitative
evaluation of risks influence on the overall safety of a building and the occupants. The applica-
tion of a method which is capable of including an identified feedback between general risks is
however required with this regard. For example, recent developments suggest coupling DE-
MATEL with Analytic Hierarchy/Network Process (AHP/ANP) - see: Ou Yang et al. (2011) for

details.
There are also other recent DEMATEL enhancements which facilitate a multi-dimensional

identification of cause-effect chain elements. For example, a concept of multi-thematic DE-
MATEL (Wu et al. 2011) can be utilised with this regard. More details about useful DEMATEL
enhancements will be soon available in a work (Dytczak & Ginda, in prep.).

Inherent DEMATEL advantages, existing and approaching enhancements and extendibility
make its application worth considering in the case of the analysis of other safety-related prob-
lems. There are also other works which confirm it (Ginda & Maslak 2012). We, therefore,
strongly advise DEMATEL application as we are sure that it is really capable to deliver the in-
formation which not only facilitates the decision making process but is also otherwise hard to

obtain.
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ABSTRACT: A number of civil engineering practice specifications have been advanced to
be reliability based. They include the LRFD Bridge Design Specifications and the Manual
for Bridge Evaluation in the US issued by the American Association of State Highway and
Transportation Officials (AASHTO). An important feature substantiating the reliability
concept in these codes is the accordingly calibrated truck load models and live load factors.
On the other hand, the reliability based calibration process then used very limited truck
weight data gathered in Canada. It has been three decades or so from then and a much larg-
er amount of truck weight data has been made available since then. Research work is re-
ported here using much more statistically significant truck weight data from many weigh-
in-motion stations in the US collected in recent years. More rigorous statistical analysis and
projection are thereby made possible and are applied on these data to examine the assump-
tions used in the calibration process of the AASHTO codes. It was found that many of
these assumptions are actually not valid. Application cases of code calibration are also re-
ported in this paper.

1 INTRODUCTION

In developing structural design specifications critical for safety of the structures thereby go-
verned, a critical step is to project future maximum loads and/or load effects to cover the
expected life span of the structures. This has been performed by extrapolation, namely us-
ing load data collected over a short period of time to project to the future. For example, the
American Association of State Highway Transportation Officials (AASHTO) LRFD Bridge
Design Specifications (2012) mandated in the US is supposed to cover the expected bridge
life span of 75 years. The truck load data used to project to the 75-year maximum level
were collected over a short time period of about 2 weeks (Nowak 1999, Kulicki ef al. 2007).

In general, engineering prediction may be performed using extrapolation or interpolation.
The former is however far less reliable than the latter where prediction is done using data
that cover the entire application range. Extrapolation is instead based on data out of the
range of application. For structural design code development, this extrapolation is more
questionable due to the very remote future being predicted to. Using two weeks of data to
project to the future of 75 years is an example of such practice - 75 years being 1,950 times
longer than 2 weeks (52 weeks / year x 75 years = 3,900 weeks). Owing to costly data col-
lection for long duration, it has been impossible to investigate this important issue for the
safety of the structures thereby designed. Recently, in the area of highway bridge design for
vehicular load, such investigations have become possible due to the availability of more and
higher quality vehicular live load data. This paper has a focus on the application, also with
an intention to provide a starting point for other applications relevant to structural safety.
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The application of extrapolation may be formulated as follows. Let F,(x) denote the cu-
mulative probability function (CPF) of one event load level x, which is estimated based on
measurement data over a short period of time. For example, about 10,000 trucks were
weighed and their load effects were used to develop Fj(x) shown in (Nowak 1999) for the
AASHTO LRFD design code calibration. For the design life of 75 years, N such load
events are expected, and Fiy(x) is used to denote the CPF of the maximum values of x for N
load events over 75 years. According to the definitions, the two CPFs have the following
relation:

Fy(x) = F; ¥x) (1

Fi(x) was further assumed to be normally distributed in Sivakumar er al. (2008) for
NCHRP Project 12-76, which brings an advantage of analytical expressions of the mean sz
and variance o’y for the asymptotic distribution Fi(x) for the future maximum value. The
probability density functions (PDFs) for one event and N events are respectively denoted as
Jitx) and fu(x) below to conceptually define the statistics of the random variables. Note that
one event may also be interpreted as the maximum value event for one time period and N
events are then understood as the maximum value event over N time periods in the future.

S = NF,¥¢x) fitx) )
u, = [, (e G
on =] G-uy) £ (e @)

For practical applications with large & values, its accuracy can become low and even
questionable. For example, for an average daily truck traffic (ADTT) of 3,000 events/day,
N will be 3000/day*365days/year* 75years = 82,125,000 (evens). As scen in Eq.2, fu(x) can
be very close to zero for a wide range of x values, because the corresponding smaller-than-1
Fi(x) values raised to a large Nth power will be practically zero. Beyond this range of x,
F;(x) will suddenly change from almost 0 to almost 1with increase of x. This behavior then
requires an extremely accurate estimation in the high tail part (i.e., large x values), which is
often difficult to provide if not impossible because it means that a very large amount of data
needs to be used.

Another approach to extrapolation is the Monte Carlo simulation using many computer
generated realizations according to fi(x). After N realizations are made available, their max-
imum value is found and saved. After repeating this process for, say, L times being statisti-
cally significant, the resulting £ maximum values will be used to estimate the mean gy and
variance o’y for the maximum value. This approach also requires an accurate and reliable
estimation of f;(x), since any deviation of this function from the real one will cause un-
wanted bias in the final result. In addition, the requirement for computation time can be
high due to the large &V value. Furthermore, the quality of random number generator de-
serves attention for verification. For example, one should have the period of the random
number generator not to be exceeded by the required A, and the random samples need to be
independent of one another to satisfy the basic assumption for them (Fu 1994). The latter is
much more difficult to have, particularly when multiple random variables are involved.

2 A NEW APPROACH FOR EXTRAPOLATION

Based on significantly more truck load data available today, a new extrapolation approach is
proposed here to address the issue related to large N or extrapolation to very remote future.
Many state departments of transportation in the US and transportation agencies in other
countries have gathered such load data using the weigh-in-motion (WIM) technique conti-
nuously for some years, with the longest history more than 10 years. For the specification-
required design life of 75 years, several to more than 10 years of load data can provide a
much better foundation for extrapolation, compared with only several days of data in the
past. On the other hand, it is critical to have a validated and efficient method to perform
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extrapolation for its reliability and thus the structural safety assured by thereon based code
provisions.

The concept of extrapolation has been formulated in Egs.1 through 4. As discussed, the
number of recursive periods N is an important parameter. More data are advantageous and
smaller N values are equivalently desired because that means fewer recursive periods or a
not very remote future to be predicted.

Accordingly, it is proposed here to have n data records each covering an approximately
equal length of M months as the basic time period. Then the maximum values of the n M-
week records will be used to perform extrapolation. Since each maximum value is for an
M-week period, N can be then significantly reduced to enhance the reliability of extrapola-
tion based prediction. For example, for M=3 (months) and extrapolation to 75 years, N will
be 75years*12months/year /3months = 300 (events). Compared with the example above for
the site of ADTT=3,000 with an N=82,125,000 events, 300 is certainly much smaller, signif-
icantly reducing the accuracy requirement for the high tail.

As shown, N can be found simply as 75*12/M. If the projection is to be done for a site
with an ADTT different from the site where data were collected, N can be accordingly ad-
justed for projection computation. For example, if the data are from a site with an
ADTT=1,000/day and the extrapolation needs to be performed for the calibration purpose for
sites with ADTT=750/day. Then N= 75*12/M*(750/1,000). Namely the projection length
can be reduced or increase by the ratio of the ADTT values.

The distributions and statistical parameters in Egs.1 to 4 can be used to determine the
needed statistics yy and oy. Again, fi(x) in Eq.2 is for a generalized one load event, namely
the maximum load in the M-week period. Accordingly, fi(x) in Eq.2 is the PDF for N such
M-week periods. Since the extrapolation now starts from this maximum value distribution,
it is accordingly modeled as an Extreme I distribution for that period. As a result, the PDF
for the future maximum value fy(x) is also an Extreme [ variable (e.g., Gumbel 1958). Its
mean and standard deviation defined in Eqs.3 and 4 are found analytically as follows, re-
lated to f;(x)’s mean u,and standard deviation o

InN
Hy =ﬂl+—7z_—£0'1 (5)

On =0 (6)

3 EVALUATION FOR PROPOSED EXTRPOLATION APPROACH

It has been observed that extrapolation to future maximum load statistics has suffered from
lack of evaluation, mainly due to lack of long term data needed for such evaluation. This
subject is investigated and an evaluation method for the proposed approach is presented
here, using two error indices as follows.

COVpp =V"(uy) / E ()
COVan=V"(a) / E{cy) ()

where COV stands for coefficient of variation, V¥ for variance, and £ for expectation or
mean. Egs.7 and 8 treat gy and gy defined in Egs.3 and 4 as estimators (Fu 1994). Their
realizations, i.e., the extrapolation results, depend on the random variation of data sample.
In other words, given a data sample, z4y and oy in Egs.3 and 4 produce a respective sample

of estimates.
These estimates are subject to random variation, which is described using their COV val-

ues in Eqs.7 and 8. The mean value and variance of uy and oy are generally defined as fol-
lows.

E(uy) = [ m(x) £, (x)de ©)
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V()= [ [(6) = EQuy)T £ (x)dx (10)

where x; (i=1,2,...,n) are data samples of x, namely data collected over the short time pe-
riod. For better quality in the high tail, not all the collected data are used, but only those in
the high tail. For example, for the proposed method, only » maximum values over respec-
tive M-week periods are used. For the method in NCHRP project 12-76 reported in (Siva-
kumar, ef al. 2008) only a top percentage of the entire data set is used to form the n-data-
point set.

For the proposed approach using the Extreme I distribution assumption for f;(x), the mean
and variance can be more explicitly written as

o0 In N
E(u,) = L (4, + —) 1, (0)dx (11)
a!
,ﬂ In & .
Vip,) =) [ +———E(u)] f(x)dx a2)
|

E(c )=\
@) =]« . .

e )= ]I \/- B0, [ (x)ds
v, (14)
(I

where

- i=1 x’

Z:ly' 0: !]x' (16)
¥, =—In(~In(——)) (17)
n+1

Here the quantities with a subscript { are for f;(x) or Fy(x) for the basic time period of M
months, and those with a subscript N are for fy(x) or Fy(x) for the future, or N x M months
away. Eqgs.15 to 17 are based on a linear regression for estimating the parameters of fj(x)
and F;(x) in the space of Extreme I distribution probability paper.

It is difficult to analytically perform the integrations in Eqs.11 to 17. A numerical ap-
proach using Monte Carlo simulation can be used to obtain these results. In order to include
scatter variation of the original data in projection, samples x; in Egs.11 to 17 are generated
according to fi(x) and with the standard deviation oy increased by (sov/u;) oyy where oyyis
the conditional standard deviation of the data used for fitting to f)(x) in the space of Extreme
I distribution probability paper. It describes the goodness of fitting and thus indicates the
random deviation of the data from the fitted function f(x).
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4 APPLICATION CASES OF EXTRAPOLATION AND THEIR EVALUATION

4.1 Cdlifornia Data

The WIM data used here were provided by California Department of Transportation
in US at Site LA710 with three lanes simultaneously recorded. Only the most heavi-
ly traveled lane is focused here. However, if multiple trucks are on the span simul-
taneously their load effects are superimposed to find the total load effect. Both
transverse and longitudinal multiple presence are included. They are referred to as
“side by side” and “front and back™ multiple presence, respectively. Two years of
data for 2006 and 2007 and a total of about 1.44 million trucks are used in this ap-
plication case.

Table 1 Error (%) of Proposed Approach for Simply Supported Spans

span length 15m l 30m J &67m T 76m ] 85m | 94m Average
Midspan moment:

4week gvN=4 0.05 0.58 1.31 1.18 0.91 0.59 0.77
20 week uxN=20 0.96 0.06 0.53 1.52 2,13 1.86 1.18
48 week g N=48 0.17 0.31 1.73 1.55 1.07 0.77 0.93
dweek oxN=4 3.94 7.71 8.61 12.78 14.43 15.07 10.42
20 week o xN=20 4.37 4.19 2.54 7.40 8.63 10.17 6.22
Support shear:

4week gxN=4 0.79 0.95 1.39 0.68 1.18 0.58 0.93
20 week unN=20 1.56 1.94 2,22 1.95 1,11 1.68 1.74
48 week unxN=48 2.20 2.04 247 3.12 1.75 2.65 237
4week onN=4 14.62 11.50 8.75 9.67 11.48 13.40 11.57
20 week 6 N=20 9.85 4.49 ¥11.55 10.19 3.83 20.00 9.98

Table 2 Errors (%) of Two Extrapolation Methods for Midspan Moment

span length | 5m [ 3om [ 67m [ 76m [ 8sm | 94m | Average

4 week uv:N=4 Propased Method 0.05 0.58 131 118 0.91 0.59 0.77
N=32368 |[NCHRP12-76Method | 2002 | 17.32 | 1743 | 1813 | 1877 | 19.33 | 18.50

4week oxN=4 Propased Method 3.94 1.71 861 | 1278 | 1443 | 15.07 | 1042
N=32369 |NCHRP12-76Method | 63.65 | 55.21 | 57.19 | 57.59 | 5845 | 55.32 | 58357

20week gx N=20 Proposed Method 0.36 0.06 0.53 1.52 213 1.86 118
N=161840 [NCHRP 12-76 Method | 24.31 | 21.86 | 2248 | 2262 | 22.82 | 23.51 | 22.93

20 week oxN=20 Proposed Method 4.37 4.19 2.54 7.40 863 | 1017 | 622
N=161840 |NCHRP 12-76 Method | 68.88 | 62.93 | 6239 | 6243 | 63.30 | 63.76 | 63.95

48 week uxN=48 Proposed Method 0.17 0.31 T 155 1.07 0.77 0.93
N=388416 |[NCHRP 12-76 Methed | 27.31 | 23.56 | 23.73 | 2490 | 26.00 | 26.78 | 25.38

Using the proposed approach, one week is selected to be the basic period for f;(x). Sever-
al N values (4, 20, and 48) are used for extrapolation, constrained by the amount of available
long term data for validation. For example for N=4(wecks), the 2-year data set can provide
up to 26 maximum values to produce estimates of the mean and standard deviation for com-
parison with the projected gy and oy For a larger N value, the available long term data limit
such evaluation. For example for N=48 (weeks), the 2-year data set can provide only two
maximum values to barely produce an estimate for the mean but not the standard deviation.
Table 1 displays the error of extrapolation using the proposed method, compared with the
observed results using the long term data. For the case of N=48, the error for oy extrapola-
tion cannot be given due to limited long term data. These results show that the proposed me-
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thod is able to produce reliable results, with error for wy between 0.05% and 3.12% and oy
within 2.54% and 20.00%. In general, the error in oy is larger than that in gy, since the
former depends on the latter.

Table 3 Errors (%) of Extrapolation Methods for Support Shear

span length [ asm [ 3om [ e7m [ 76m | 8m [ sam [ Average
4 week v, N=4 Proposed Method 079 | 095 | 135 [ o068 | 118 | 058 | 093
N=32358 |NCHRP12-76Method | 19.10 | 1678 | 17.37 | 1861 | 1884 | 19.94 | 18.44
4 week ox N=4 Proposed Method 1462 | 1150 | 875 | 967 [ 1148 | 1340 [ 1157
N=32368 |NCHRP 1276 Method | 58.51 | 57.01 | 62.38 | 6337 | 63.80 | 63.96 | 61.50
20 week ux N=20 Proposed Method 1.56 1.94 2.22 1.95% 111 1.68 1.74
N=161840|NCHRP 12-76 Method | 23.51 | 20.81 | 22.43 | 23.52 | 24.95 | 2525 | 23.41
20week oxN=20 __ [Proposed Method 985 | 449 | 1155 [ 1029 | 3.83 [ 2000 | 998
N=161840 [NCHRP 12-76 Method | 62.88 | 65.62 | 63.98 | 65.64 | 70.84 | 64.40 | 65.56
48 week 1 N=48 Proposed Method 2.20 2.04 2.47 3.12 175 2.65 2.37
N=388416 [NCHRP 12-76 Method | 25.36 | 2299 | 24.86 | 2537 | 27.22 | 27.33 | 25.52

Table 4 % Error and Estimated Error of Proposed Approach for Midspan Moment

Span length ! 15m | 30m [ 67m | 76m | 85m l 94m ! Average
4week g~ N=4 |Error 0.05 0.58 1.31 118 0.91 0.59 0.77
Estimated Error 3.53 2.61 2.99 290 3.24 2.88 3.02
dweek cxN=4  |Error 3.94 1.71 3.61 12.78 14.43 15.07 10.42
Estimated Error 15.72 13.33 13.21 13.5% 12.1% 11.50 13.32
20 week ux N=20 |Error 0.96 0.06 0.53 1.52 213 1.86 1.18
Estimated Error 5.28 4.24 3.78 4,78 4.37 4.36 4.47
20 week o xN=20 [Error 437 4.19 2.54 7.40 B8.63 10.17 6.22
Estimated Error 1591 15.68 12.26 16.31 12.86 12.46 14,25
48 week gxN=48 |Error 0.17 0.31 73 155 1.07 0.77 0.93
Estimated Error 3.46 4.74 3.92 5.35 4,77 5.24 4,58

Tables 2 and 3 display the errors of the NCHRP 12-76 method for comparison with the
proposed method, respectively for the midspan moment and support shear. Note that al-
though the N values for these two methods are different but they represent the same time
lengths for projection and thus the extrapolation results are comparable. Comparison of
these results shows that the proposed method is more reliable with smaller and sometimes
much smaller errors. The error of the NCHRP 12-76 method is often 10 times larger or
more than the proposed method. To simultaneously see the reliability of the estimates of uy
and oy, Fig.1 plots the PDF fy(x) based on the real data, compared with the proposed me-
thod and the NCHRP 12-76 method. The latter is seen to always underestimate g and oy.
It appears that the process of extrapolation from the Normal PDF f;(x) to the asymptotic Ex-
treme I PDF fi(x) may bear significant error.

This comparison also exhibits the effect of &V in the computation. As discussed earlier,
larger N values require higher quality data that is difficult to achieve, which leads to a lower
reliability indicated by larger errors in these results. Tables 4 and 5 exhibit the estimated er-
ror defined in Egs.7 and 8 compared with the observed error using the WIM data. It is seen
that the former is in a reasonable agreement with the latter, being offered as a practical eval-
uation tool for the extrapolation method. For example, using 26 weeks as the basic period
for fi(x), extrapolating to 75 year means N=150. With this relatively smaller N value, possi-
ble error can be so estimated for a quantitative evaluation.
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Table 5 Error and Estimated Error of Proposed Method for Support Shear

Span length \ 15m l 30m I 67m l 76m I 85m ] 94m \ Average
4week gv;N=4  |Error 0.79 0.95 139 0.68 1.18 0.58 0.93
Estimated Error 3.78 237 2.97 2.95 3.02 2.88 2.99
aweek onN=d Error 14.62 11.50 B8.75 5.67 11.48 13,40 1157
Estimated Error 15.24 12.40 15.82 11.03 11.08 13.93 13.25
20 week g N=20 |Error 1.56 194 2.22 1.95 1.1 1.68 1.74
Estimated Error 4.35 3.64 3.51 4.67 3.66 3.75 3.93
20 week oxN=20 |Error 9.85 4.49 11,55 10.19 3.83 20.00 9.98
Estimated Error 13.70 12.87 11.79 13.59 12.20 12.44 12.77
48 week uxN=48 |Error 2.20 2.04 2.47 3.12 175 2.65 2.37
Estimated Error 4.16 4.70 4,93 4.84 5.33 5.10 4.84

Figure 1 graphically exhibits the differences between the future PDF based on the WIM
data and the predicted PDFs respectively using the proposed approach and the NCHRP 12-
76 method for the midspan moment in two simply supported spans of highway bridge.
They show that the NCHRP 12-76 method under-predicts the mean value and standard dev-
iation of future maximum values, which can lead to un-conservative design.

4.2 New York Data, Henan Data, and Jiangxi Data

The New York data set is provided by New York State Department of Transportation from
Site 8280 with two lanes simultaneously recorded. It includes a total of about 0.33 million
trucks over a period of more than 4 years between 2003 and 2008. The mostly loaded driv-
ing lane is used for projection, with multiple presence of trucks covered in the same way as
for the California data. Similar results were observed as in Tables 1 through 5, also with
comparisons of the proposed and NCHRP 12-76 methods, again indicating higher reliability
of the former. Due to limit on space, more details are not shown here. The observed
agreement between the proposed approach and real data also supports the estimated error as
a good index for practical evaluation of extrapolation using the proposed method.

The Henan data set was collected over about 25 months in 2005 to 2007, including about
2.42 million trucks and obtained from Henan Province Department of Transportation in
China. The WIM station records three lanes simultaneously, including a shoulder lane that
had much fewer trucks recorded. The driving lane that is most intensively traveled is fo-
cused here, and multiple presence of trucks is also included. This data set, along with the
next one, provides an application opportunity of the proposed method for different data
sources. The proposed method performed more reliably as seen similarly in the previous
data sets, while more defails are not tabulated here due to space limit. Again, it often has 10
times smaller errors compared with the NCHRP 12-76 method.

The Jiangxi data set was obtained from Ganding Highway Bureau in Jiangxi Province,
China, recorded over a period of about 30 months in 2005 to 2007. The data set includes
about 2.02 million trucks on all available three lanes simultaneously recorded. The driving
lane was most heavily loaded and is used here for application, with both “side by side” and
“front and back” multiple presences also covered in the same way as for the Henan data.
The estimated error also exhibits the observed trend of error increasing with N and being
smaller for uythan for oy. Therefore, it can serve as an index for extrapolation evaluation.
Due to space limit, further details are not exhibited here.

5 APPLICATIONS FOR CODE CALIBRATION

The proposed approach has also been applied in calibrating load factors for evaluating exist-
ing highway bridges in China consistent with their design requirement and in developing
multiple presence factors for the AASHTO design specifications improved using measured
truck weights. More details of the former are presented in (Fu and You 2009) and the latter
in (Fu et al. 2011).
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ABSTRACT: Wind power converter systems are essential subsystems in both off-shore and on-
shore wind turbines. It is the main interface between generator and grid connection. This system
is affected by numerous stresses where the main contributors might be defined as vibration and
temperature loadings. The temperature variations induce time-varying stresses and thereby fa-
tigue loads. A probabilistic model is used to model fatigue failure for an electrical component in
the power converter system. This model is based on a linear damage accumulation and physics
of failure approaches, where a failure criterion is defined by the threshold model. The attention
is focused on crack propagation in solder joints of electrical components due to the temperature
loadings. Structural Reliability approaches are used to incorporate model, physical and statisti-
cal uncertainties. Reliability estimation by means of structural reliability methods and simula-
tion are implemented for the power converter system and results are compared. Based on an il-
lustrative example, it is shown that structural reliability methods are appropriate techniques to
use for further convertor system reliability estimation studies.

1 INTRODUCTION

Structural reliability methods are powerful tools for reliability levels estimation. These ap-
proaches are based on limit state equations, where parameters and models uncertainties are tak-
en into the account. In this paper, a time dependent limit state equation is used and First Order
Reliability Method (FORM) is employed for reliability level estimation. The results are com-
pared with simulation results using the same limit state equation.

Section 2 details the preliminaries of the study with detailing on convertor system, compo-
nents structure, physics of failure model as well as deterministic and probabilistic approaches.
Section 3 outlines the FORM approach, details its application for the particular example, reveals
the results and compares the FORM results with simulation results.

2 PRELIMINARIES

2.1 Wind turbine converior system

Wind Turbine (WT) power convertor systems are a ‘bridge” between the generator and the pow-
er grid. The convertor system is an interface for variable voltage amplitudes and frequencies at
generator side to adapt for the stable levels of voltage amplitudes and frequencies at the grid
side. Therefore, convertor system is considered to have two parts: generator side and grid side.
Multilevel convertor systems are used in practice, which consists of Insulated Gate Bipolar
Transistors (IGBT) modulus. An IGBT module is a three-terminal power semiconductor device
(PSD), which consists of diodes and silicon chips. These components are mainly comprised
from semiconductors, aluminum, copper and ceramics (see Bailey et al. 2007, Ciappa 2002).
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Convertor system designs and IGBT modules differ depending on grid outputs and WT rated
power. In this paper, based on Kostandyan & Ma (2012) a two level convertor topology, see
Figure 1, is used. It is based on the 2.3 MW Siemens WT with 3 m/s cut in and 25 m/s cut out

wind speeds.

Generatar
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Convertor System

Figure 1: Two level convertor topology in wind generating system

The selected IGBT module was FZ3600R17HP4_B2, see Figure 2a. The FZ3600R17HP4_B2
IGBT module consists of 24 parallel connected chips. In Kostandyan & Ma (2012) it was as-
sumed that these chips were Infineon Technologies SIGC186T170R3 chips with dimensions of
13.63 mm in length and 13.63 mm in width. The assumption was justified because selected chip
parameters satisfy the selected IGBT module parameters, so it will satisfy convertor system re-
quirements. Also in Kostandyan & Ma (2012), IGBT’s junction temperature is considered for
grid side convertor system, and minimum, maximum, mean junction temperatures depending on
wind speeds were presented for an ambient temperature of 28° C, see Figure 2b.
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Figure 2: (a) FZ3600R17HP4 IGBT module; (b) Grid side IGBT’s junction temperature vs. wind speed,
ambient temperature 28° C

2.2 Physics of failure in solder cracking under silicon die

In Ciappa (2002) the selected IGBT chip failure mechanisms as well as the architecture were
presented. Bond wire lift off, bond wire heel cracking, solder joint cracking (solder fatigue) be-
tween silicon chip and DCB upper layer cupper as well as between DCB lower layer cupper and
mounting plate were the four most common failure modes. In Kostandyan & Sorensen (2012a)
the model was developed for solder joint cracking (solder fatigue) between silicon chip and
DCB upper layer cupper failure mode.

This model has a mixed Coffin-Manson and Arrhenius form model and estimates the average
accumulated plastic strain based on temperature loading by the following form:
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where 4, B are constants, O is activation energy, R is the universal gas constant, ¢, and aj are
CTE at 20° C for copper and silicon, AT and 7, are the temperature range and temperature

mearn.

Based on finite element analysis data in Yin et al. (2008), the constants in (1) were estimated
(see Kostandyan & Sorensen 2012a and Table 1) for SnAg solder. In this paper, it is assumed
that estimated parameters have values as shown in Table 1. However, it is noted that more accu-
rate parameters are reported in Kostandyan & Ma (2012) and it is possible to estimate the pa-
rameters experimentally. As far as this research is concentrated on structural reliability methods
illustration, parameters precisions have secondary importance.

Table 1: Estimated parameters for the model described in (1), temperature in Kelvin
Model Parameters  Estimates
log(dlae, —ag))  -416.16
B 74.122
O/R 4,610.0

The required number of cycles for a crack to reach the length L in solder interconnect can be
expressed by:

N,(Ag,)= Q(A‘i 7 (2)

where L is the solder interconnect length in millimeters, a, b are constants, Ny is the required
number of cycles to failure or number of cycles for the crack to reach L and Ae, is the average
accumulated plastic strain per cycle.

In Lu et al. (2007) the constants a, b were estimated (a= 0.00562, b=1.023) for SnAg solder
interconnect between baseplate and ceramic for the defined failure criteria as 20% reduction of
the total interconnect area. In Bailey et al. (2007), Lu et al. (2009) and Yin et al. (2008) the
same constants were used for further research.

This paper is focused on crack propagation in solder joints under silicon die. It is assumed
that solder thicknesses either between die and ceramic or ceramic and baseplate are almost the
same. This assumption will allow using estimated constants a, & from Lu et al. (2007).

2.3 Deterministic damage model for reliability estimation

A deterministic damage model was presented in Kostandyan & Sorensen (2012a) and applied to
the estimate reliability level for each temperature profile based on Palmgren-Miner rule, see
Madsen & Krenk (1986). Component stresses were expressed by temperature fluctuations. Pair
of AT,T,, were defined as the temperature range and temperature mean at level i, such that the

i

damage level at time 7 could be expressed as:

e RATE

all ict

and the deterministic time to failure would be defined by r=1,, where D(¢,)=1.

Combining (1), (2) and (3) deterministic damages were estimated based on IGBT’s junction
temperature profiles. Failure was defined by crack length to reach to the predetermined length
associated with 20% reduction of the total interconnect area.

Based on wind speed profile and junction temperature estimates for each wind speed defined
in Kostandyan & Ma (2012), the IGBT’s junction temperature for grid side convertor system
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was estimated. Next, a rainflow counting algorithm was applied to the IGBT junction tempera-
ture profile in order to estimate the pairs of AT, 7, . It was assumed in Kostandyan & Ma
(2012) that there was enough time for an ambient temperature to propagate into the IGBT mod-
ule. This means that an ambient temperature affects linearly on IGBT-operational junction tem-
perature. The operational wind profile contains wind speeds that are between cut-in and cut-out
speeds. Data for wind speeds and ambient temperatures were available for 3-hour averages at 10
meter height, which were selected for a SMW power WT located near Thyborgn, Denmark with
latitude 56.71° and longitude 8.20°. The wind profile power law was used to estimate the opera-
tional wind speeds at 100 m height with a wind shear exponent of 0.1. Also, it was assumed that
the SIGC186T170R3 chip has dimensions of 13.63 mm in length and 13.63 mm in width, so
20% shrinkage of the total solder interconnected area under the chip would be defined by crack

length of 0.72 mm.

2.4 Probabilistic damage model for reliability estimation

Kostandyan & Sorensen (2012b) and Kostandyan & Sorensen (2011) described the parameters
in the damage accumulation model to be estimated. Uncertainty and variability that were
emerged from parameters estimation should be accounted for in the reliability assessment as
well as model uncertainties.

(1) and (2) are reformulated in order to include randomness by considering uncertainties and
be written:

.
Aa‘;, =5 Asﬂgm & A(AT)B (a'c_.u — iy )e[ RT"]esm (4)

! : L
N (Ag)=——— ]
(az,) ag,(Ag),)" )
where g, models estimation uncertainty associated to the constant “a” and &, is the model un-
certainty associated with eq (1).
Reliability estimation by structural reliably methods incorporates estimated parameters varia-
bilities through limit state equation(s). The limit state equation is written:

n(AT,T,,) _
,Am, g &, )= Am— e 6
g(t.Am,e,,2, )= Am Z VT Tt 2 (6)

where Am models the uncertainty associated to Miner’s rule (linear damage model uncertainty).

Mean values, standard deviations and distributions are summarized in Table 2, where the as-
sumptions are defined by (*).

Table 2. Parameters for stochastic variables
Stochastic  Distribution  Mean Standard

Variable deviation
Am Normal* il 0.1%
g, LogNormal* 1 0.5%
Ln(e,) Normal 0 0.36

(*) represenis the assumption regarding the parameter

3 FIRST ORDER RELIABILITY METHOD

The reliability index (#) as function of time, ¢, is determined by FORM, see e.g. Madsen &
Krenk (1986). Using the limit state equation defined in (6), the cumulative distribution, proba-
bility density and hazard functions are obtained by:

Fy ()= P(g(t,0m,e,,¢,) <0) = D(-A(5) 7
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FORM allows estimating measures of the relative importance of the stochastic variables used
in the stochastic modeling. The limit state equation in (6) was employed for reliability estima-
tion by FORM. The same operational wind speed data as in Kostandyan & Ma (2012) and junc-
tion temperature relationship with wind speeds, see Figure 2b, were used to estimate junction
temperature profiles by taking into the account ambient temperature linear effect, see Figure 3a.

Based on these profiles the rainflow counting algorithm was applied and pairs of AT,7,
were estimated for the given time period, e.g. see Figure 3b for maximum junction temperature
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Figure 3: (a) Wind speeds vs. junction temperatures vs. time; (b) Rain flow counting for Tjmax profile
until 240 hrs of operation
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Figure 4: (a ) Reliability indexes based on all operational junction temperatures; (b) Cumulative
probability of failures based on FORM and simulation results

The limit state equation in (6) was defined in time domain based on the beginning of wind speed
profile to the end of each time interval, with 240 hours increment. MATLAB functions were
created that handle transformation, time dependent limit state equations, numerical differentia-
tion and reliability index estimation. The difference quotient in numerical differentiation was set
to 10" and error for reliability index estimation was set to 10°. Reliability indices based on each
operational junction temperature profile during the time were found and depicted in Figure 4a.
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The reliability indices decrease in time for all exposed profiles, indicating an increase in
probability of failures during the time. The rates of decrease between exposed profiles are dif-
ferent due to the severity of them.

The simulation techniques are used to estimate reliability levels for each IGBT-operational
junction temperature profiles based on 1000 simulation runs. These results are compared with
results from FORM in this paper. Comparisons of the results have been performed and exact-
ness has been observed. Estimated reliability indices from each junction temperature profile are
converted by standard normal distribution function to their corresponding probability values.
Plots of cumulative distribution functions are depicted in Figure 4b. It is seen that FORM esti-
mates reliability levels with high accuracy.

The non-parametric Kaplan—Meier estimation method was used to estimate empirical cumu-
lative distribution functions. Based on this method B10 (or L10, 90% reliability level) fatigue
lives were estimated from simulation results and linear interpolation was used to find B10 fa-
tigue lives based on FORM, see Table 3.

Table 3: Probabilistic fatigue failure times comparison
Simulation based B10 FORM based B10 fa-
fatigue failure times tigue failure times (hrs)

IGBT-operational junction

temperature profile (hrs)

Tjmax 2273 2253
Tjmin 18613 17642
Tjmean 6075 5843

A damage caused from the highest temperature (Tjmax) profile will shorten useful life much
more than the damage caused by the mild temperature (Tjmin) profile. Such a consequence will
influence on B10 fatigue life depending on the exposed temperature profile.
In this paper, based on the same wind speed profile the junction temperature profiles were esti-
mated. A different wind speed profile will result in different junctions temperatures and thus
different fatigue lives would be estimated. However, two key points are:
e the shortest (longest) fatigue life will always be observed under the Tjmax (Tjmin) tem-
perature profile irrespective of wind profile
e the wind speed profile for the particular location will have established autocorrelation
factor and aleatory variability, assuming steady environment (e.g. no climate change ef-
fect, no new constructed high buildings close to the turbines that might change wind
speeds, etc.)
Based on the applied FORM, the omission sensitivity factors are estimated for the stochastic
variables (see Table 2). The temperature profile did not have effect on sensitivity factors and es-
timated values in time were presented in Table 4.

Table 4: Omission sensitivity factors

Stochastic

Variable Mean
Am 1.012
£, 1.600
£ 1257

i

It is seen that the uncertainty related to the constant “a” in (2) is important. A 60% of error
will be accrued in the reliability index estimation if constant “a” in (2) is assumed determinis-
tic. Therefore, it is desirable to allocate recourses for estimating especially the constant “a” in
(2) as accurately as possible.
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4 CONCLUSION

The paper demonstrates application of structural reliability techniques for reliability assessment
of electrical component. FORM was used to evaluate the reliability of the grid side IGBT chip,
used in two level wind generating convertor systems. Failure was defined by the fatigue crack
length of 0.72 mm, which corresponds to 20% shrinkage of the total solder interconnected area
under the chip. A time dependent limit state equations was formulated based on physics of fail-
ure model and the linear damage accumulation rule. Three temperature-loading profiles were
constructed via wind profile and reliability levels were estimated under the exposure of each
profile.

Traditionally reliability analyses of electrical components are made based on classical relia-
bility methods that do not allow for a more detailed modeling of aleatory and epistemic uncer-
tainties. This is possible using structural reliability techniques which further allows sensitivity
studies to be made without much extra effort.

Close estimates of reliability levels are achieved by FORM in comparison with simulation re-
sults. This indicates that for the further research, based on the described updated limit state
equation, FORM is the appropriate technique to use. Advantages of the FORM vs. simulation
are short computational time, possibility for parameters sensilivity analysis and ability for fac-
tors calibration. One of the disadvantages of the FORM in the particular application is achieving
result without ability to visualize damage behavior and degradation paths. However, for a prob-
abilistic operation and maintenance strategy application these visualizations are not necessary
and a software module might be integrated into WTs that might do calculations based on actual /
observed loads.

This research is conducted in order to illustrate the application of structural reliability meth-
ods and it should be noted that the determined failure times / rates not necessary represent the
real-life operating lifetimes, this is due to the fact that the some parameters distributions and
COVs were assumptions.
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ABSTRACT: Probabilistic models are developed to predict shear and moment demands on wind
turbine support structures subject to seismic excitations, and environmental (wind, wave, and cur-
rent) and operational loadings. The probabilistic models are formulated starting from existing deter-
ministic models and developing correction terms that capture the inherent bias. The correction terms
and a model error are assessed using data obtained from detailed three dimensional nonlinear finite
element analyses of a set of wind turbine systems that consider different design parameters. The fi-
nite element analyses account for the aerodynamic damping of operating wind turbines and the dy-
namic soil-structure interaction. The proposed probabilistic seismic demand models provide unbi-
ased predictions of the seismic demand on support structures and properly account for the underlying
uncertainties. The developed demand models are used to compute fragility estimates of an example
support structure defined as the conditional probability of not meeting specified capacity levels.

1 INTRODUCTION

Extensive installation of offshore wind farms for electricity production in moderate to high
seismic regions in the United States and other countries has raised a new concern about the safe-
ty of wind turbine support structures subject to seismic loads (Prowell & Veers 2009). The de-
mands on the support structure of wind turbines are typically determined using computational
models. Several aeroelastic simulation codes such as FAST (Jonkman & Buhl Jr. 2005) and
ADAMS (Laino & Hansen 2001) are used in the industry to simulate fatigue, aerodynamics,
structural dynamic response, and turbulence. The main limitation of these simulators is that they
are not capable of modeling the nonlinear foundation behavior and the soil-structure interaction.

Mono-piles are common foundations for offshore wind turbine support structures installed in
water depths less than 30 meters, which is the focus of this paper. Typical methods for the anal-
ysis of laterally loaded single piles in general are based on Winkler (elastic) foundation models,
or continuous models accounting for the coupling of forces and displacements in the soil along
the pile. For nonlinear analyses, the p-y method (Matlock 1970), is the most commonly used
foundation model. However, depending on the pile diameter and soil type, the p-y method may
result in inaccurate responses. This is true in particular for the pile sizes typical of foundations
of offshore wind turbines (Mardfekri et al. 2012).

Mardfekri & Gardoni (2012) developed probabilistic model for the deformation, shear and
moment demands on the support structure of offshore wind turbines subject to wind, wave, cur-
rent and turbine operational loadings properly accounting for the nonlinear soil-structure inter-
action. However, with the extensive installation of wind farms in seismic regions, it is important
to consider also seismic loading. Witcher (2005) showed a significant difference in the response
of wind turbine support structures in different load cases including continuous operation
throughout the earthquake, emergency shutdown initiated during the earthquake and parked
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throughout the earthquake. He concluded that this difference is due to the absence of aerody-
namic damping in the parked condition and after the emergency shutdown. This paper develops
shear and moment demand models for the support structure of offshore wind turbines subject to
seismic loading in addition to environmental (wind, wave, and current) and operational loadings.
The wind turbine is considered to be operating throughout the earthquake and the aerodynamic
damping due to the operation of the turbine is included in the dynamic response analyses of
wind turbine support structures. The proposed demand models are then used to assess the seis-
mic fragility of an example offshore wind turbine support structure for given values of the in-
tensity measure of the loading (i.e., the mean wind speed, significant wave height and spectral
acceleration.)

2 PROBABILISTIC DEMAND MODELS

Ideally a model should incorporate all available sources of information including the rules of
physics and mechanics, and experimental and field data. To incorporate the rules of physics and
mechanics and facilitate the acceptance of the proposed models, following Gardoni et al. (2002,
2003), we develop probabilistic demand models by adding a correction term to a selected exist-
ing deterministic demand model. A probabilistic demand model for a system having K differ-
ent demands is formulated as

D, (x,w,0,)=d, (x,W)+7, (x,w.0,)+0,5  k=1....K (1)
where D, (x,w,®,)= k" probabilistic demand model, x = vector of material properties, structur-
al dimensions and boundary conditions, w=(W,,H_,S,) = vector of measures of external load-
ing, including the mean wind speed (W), significant wave height ( /), and spectral accelera-
tion (S, ),0®, =(0,.0,), in which 0, =vector of unknown model parameters, d, (x,w)=selected
deterministic demand model, y,(x,w,0,)=correction term, and o, ¢, =model error, in which
&, =random variable with zero mean and unit variance and o, =standard deviation of the model
error. In this paper, k=v or m, for the shear or moment demand, respectively. In formulating
the model in Eq. (1), we employ a logarithmic transformation of the data to satisfy the ho-
moskedasticity assumption (i.e., o, is constant), the normality assumption (&, follows the
standard normal distribution), and the additive form vsed in the equation. The correction term,
7.(x,w.8,), is added to incorporate the missing or correct for the misrepresented terms in
d (x,w). It is written as

Vi (X,W,G&):Zj:ghhh(x’w) (2)

where 8, =[8,], &, (x,w)=normalized explanatory functions that might be significant in cor-
recting o, (x,w), and p =the number of unknown model parameters. The vector of model pa-
rameters, @, , can be estimated following a Bayesian approach using available data.

In this section, we develop probabilistic shear and moment demand models for horizontal ax-
is offshore wind turbines rated between 0.5 and 5 megawatts (medium to large wind turbines).
The wind turbines of interest in this paper are supported by a tubular steel tower, which is seated
on a steel mono-pile foundation at the base and installed in water depths less than 30 meters. We
predict shear and moment demands on the support structures subject to seismic excitation, in
addition to wind, wave, current and turbine operational loadings.

2.1 Deterministic demand model

An ideal deterministic model should be simple and yet accurate, and commonly accepted in practice.
Because of these reasons, Mardfekri & Gardoni (2012) used the program FAST to compute de-
terministic predictions of the demands on the support structure of wind turbines subject to envi-
ronmental and operational loadings. FAST employs a combined modal and multibody dynamics
formulation to simulate the aerodynamics and structural response of wind turbines. For given
values of the mean wind speed and turbulence intensity, a time history of wind speed is generat-
ed internally to FAST by TurbSim and used as an input for the dynamic analysis in FAST.
TurbSim uses a statistical model to numerically simulate time series of three-component wind-
speed vectors (Jonkman 2009). TurbSim supports the IEC Kaimal model (Kelley & Jonkman
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2007) that is used in this study. More details on the Kaimal model can be found in Mardfekri &
Gardoni (2012). In addition, FAST supports the JONSWAP/Pierson-Moskowitz spectrum
(Dean & Dalrymple 1991) to model linear irregular waves for given significant wave height and
wave peak period. It then uses the Morison's equation to determine the hydrodynamic forces on
the tower. Current loading is also incorporated in the Morison's Equation. Additional details on
the modeling of the wave and current loading can be found in Mardfekri & Gardoni (2012).

Following a consistent approach to the one that Mardfekri & Gardoni (2012) used to generate
environmental loadings, for given intensity and duration parameters and frequency content of the
ground motion, we generate synthetic ground motions using a stochastic model proposed by
Rezaeian & Der Kiureghian (2010). Generated ground motions are then used as input for dy-
namic analyses also carried out using FAST.

2.2 Model correction

To construct y,(x,w,8,), we select A, (x,w)=1 to capture potential constant bias in the model,
and A,,(x,w)=d, (x,w) to capture any possible under- or over-estimation of the deterministic
model. To capture possible dependences of the residuals on foundation, environment and earth-
quake parameters, additional explanatory functions are also considered as shown in Table 1.

Table 1. Explanatory functions for demand models

Explanatory function  Formula Parameters
h,u 1 k=v or m
B d, d, = Deterministic shear or moment demand
W =Mean wind speed; H,, =Hub height
fus In(#, -,/ Hy) Ifz Natural pf:riocllJ of the sTJpport struc%ure
Py In(/T,) IT = Wind turbulence intensity
hys In(H_/H,) H_ =Significant wave height
Pis In(7, /T) T, =Wave peak period
Ay In(S, / g) S, = Spectral acceleration; g = Ground acceleration
Figs In(S,/H,) S, =Spectral displacement
Iy In(PGA/ g) PGA =Peak ground acceleration
Brio In(PGV T, | H,) PGV =Peak ground velocity
by I(PGD/ H,) PGD =Peak ground displacement
iz In[272PGV [ (PGA-T))]
Furs In[27PGD [/ (PGV -T)]
Pirq In(RD/H,,) RD = Rotor diameter
figrs In(C /C,..) €. =Soil shear wave velocity; C_ =194.594 m/s
Fris n(C,,/E.,;) C,, =Soil cohesion; F_, =Soil modulus of elasticity
hyir Inftan(g, )] @.,, =Soil friction angle
by In(K,/K,) K, =Tower stiffness; K, = Foundation stiffness

To develop parsimonious probabilistic demand models, we desire to keep only the explanatory
functions that are strictly needed. Therefore, a step-wise deletion process is used to identify the
important functions among the candidate ones listed in Table 1. In this process the model is re-
duced by the deletion of unimportant explanatory functions based on the posterior statistics of
model parameters 8, and o, . More details on step-wise deletion process are presented in Gardoni
et al. (2002). Due to the lack of available data needed to conduct the statistical analysis required to
estimate the model parameters, we generate a database of virtual experiments using accurate non-
linear dynamic analyses of offshore wind turbine support structures as explained next.

2.3 Virtual experiment data

A set of representative configurations is selected to generate the virtual experiments. The repre-
sentative configurations are selected by using a “space filling” experimental design technique to
ensure that the configurations have a good coverage of the design space. For this purpose we use a
Latin hypercube sampling technique (McKay et al. 1979). A total of 100 configurations are gener-
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ated. Table 2 presents the variables considered to characterize each wind turbine configuration and
their ranges.

Table 2. Geometrical, mechanical and loading parameters used in experimental design

-

Property Ranges Property Ranges

Rotor diameter, RD (m) 40-126 Soil elasticity modulus, E,,; (MPa) 13-200

Tower height, , (m) 40 - 80 Friction between pile and soil, 02-03

Tower top diameter, D; (m) 1.9-4.0 Soil type Clay Sand

Tower base diameter, D, (m) 3.0-6.0 Soil cohesion, Cy,y (kPa) 10-200 0-80 |
Tower diameter to thickness ratio 100 - 200 Soil friction angle, @i (%) 10-25 35-45 |
Water depth, WD (m) 20-30 Mean wind speed, W, (m/s) 3.0-30 !
Marin segment height, 5 (m) WD+(2.5-10) |Turbulence intensity, /T, 0-0.16 ‘
Steel type §235, 8275, 8355 |Significant wave height, H;(m) 1.0-10

Tower vibration period, 7, (s 09-119 b RS 3

Pile pénelrition; i’} ©) 10 - 50 Significant wave period, 7, (s) 3.6\/? = S.Oﬁ

Pile diameter to thickness ratio 50 - 100 Rated wind speed, W, raeq (M/S) 103 -11.7 I

2.3.1 Aralytical modeling

Finite element models are developed in ABAQUS (2007) to simulate the dynamic response of the
support structure of typical offshore wind turbines, subject to environmental and operational load-
ing as well as earthquake excitations. The finite element model of the support structure accounts
for the aerodynamic damping by considering a 5% structural damping for the steel tower. The
value for the damping is based on Witcher (2005). The tubular steel tower, marine segment and
pile foundation are modeled using linear elastic 3D shell elements. Foundation nonlinearities are
considered explicitly in defining soil behavior and soil-pile interactions. The Mohr-Coulomb plas-
ticity model is used to define the nonlinear behavior of the soil. The nonlinear behavior of the soil-
pile contact is modeled using “contact pair,” a formulation in ABAQUS to define interaction be-
tween two bodies. An elastic-plastic Coulomb model is used to describe the nonlinear behavior of
the soil-pile contact. The aerodynamics of the turbine is simulated using FAST. The time history
of the forces at the top of the tower due to the wind and the operation of the turbine, resulted from
the simulation in FAST, is then used in the finite element model of the support structure as an ex-
ternal loading in addition to wave, current and earthquake. We select ground motion records from
the PEER NGA database (1999). Following Shome and Cornell (1999), the selected ground mo-
tions are subdivided into five bins based on moment magnitude (M) and the closest distance be-
tween the record location and the rupture zone (R). Each bin represents specific combinations of
the earthquake characteristics and the collection of all bins captures all possible characteristics.
The major horizontal ground motion component is used in the analyses.

2.3.2 Equality and lower bound data

Finite element analyses for large deformations are sensitive to how the solution method handles
large displacements and second order effects. As a result, the outcomes might not always be accu-
rate. Following Gardoni et al. (2002) and Ramamoorthy et al. (2006), the data from the virtual ex-
periments are divided into equality and lower bound data. We consider a threshold for drift of 5%,
such that if the maximum drift during one time history analysis is less than 5%, then the shear and
moment data are considered as equality data. If an analysis produces a drift that exceeds 5%, then
we consider the maximum shear and moment that occurred prior to reaching the 5% drift as lower

bound data.

2.4 Bayesian updating

The unknown model parameters @, are estimated using the Bayesian rule (Box & Tiao 1992)
f(gk):KL(@k)P(@k) (3)

where f£(@,)=the posterior distribution of @, that represents the updated state of knowledge;

L(®,) =the likelihood function that represents the objective information on @, that comes from
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the results of virtual experiments; p(®,)=the prior distribution of @, that reflects the state of
knowledge about ®, prior to conducting the virtual experiments; and x = a normalizing factor. In
this paper, due to the lack of prior information, we use a non-informative prior in assessing the
posterior statistics of @, . The likelihood is a function proportional to the conditional probability
of observing the results from the virtual experiments for a given value of ©, . Under the assump-
tion of statistically independent observations and given that g, follows a normal distribution,
L(®,) is written as (Gardoni et al. 2002)

0, - (0
L(®,)« [] i_g{’".t.( .:)PX H d{_"?k( k):l (@)

S CR N %
where 7, (8,)=D, 7%_ (x,,w)—»(x,,w,.0) and D, =observed value for the ¥ demand for giv-
en x; and w,.

2.5 Shear demand model

The probabilistic shear demand model is formulated as the natural logarithm of the shear demand
at the base of the tower normalized by the mean value of the yield shear force, defined as
V f AR/ AR +r7)/(R* +Rr+r?), where ﬁ =expected yield stress of steel, 4= tower base
cross section area, and R and r =outer and inner diameter of the tower section, respectively. The
model selection results in the following probabilistic shear demand model:

D,(x,w,0,)=d,(x,w)+8,+6,,d (x,w)+6, ln[PGA J +8,, In[%}- o8, (3
£ i
Table 3 gives the posterior statistics of @, =(8,,0,). Figure 1 shows a comparison between
measured and predicted shear demands. The dashed lines in Figure 1b delimit the region within
one standard deviation of the model. The figure clearly shows an improvement in predicting the
demand when using the proposed probabilistic demand model.

2.6 Moment demand model

The probabilistic moment demand model is formulated as the natural logarithm of the moment
demand at the tower base normalized by My f S, where § =elastic section modulus at tower
base. The model selection leads to the following model form:

D, (xw,0,)=d, (xw)+6, +9,,,2d,,,(x,w)+eml,1{?}@,,31{27; PED ]+
H

PGV,
K,
Bmlsln[ G J+&nlaln[ J+cr€
C.smax Kf

Table 4 gives the posterior statistics of @, =(8,,0,), and Figure 2 shows a comparison be-
tween measured and predicted moment demands. Comments analogous to those made on Figure 1
can also be made for the results shown in Figure 2.

(6)

Table 3. Posterior statistics of the parameters in the shear demand model

A Mean Standard Correlation coefficient
Deviation a, a, 8 B, o,
8, 312 0.428 1
@ —0.76 0.061 0.74 1
8., 0.30 0.040 011 039 1
B4 -0.24 0.041 0.71 012 -0.09 1
G, 0.42 0.033 0.02 0.09 —0.17 -0.03 1
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Figure 1: Measured and predicted shear demands based on (a) deterministic and (b) probabilistic models

Table 4. Posterior statistics of the parameters in the moment demand model

p ; M Standard Correlation coefficient
e = Deviation L 8.2 L 8, Bas B Om
8. -0.32 0.640 1
a., -0.70 0.066 0.25 il
[ 0.20 0.044 0.35 -0.36 1
G -0.24 0.080 -0.49 0.46 -0.62 1
[ —0.38 0.181 0.61 0.37 -0.14 0.07 1
- - —0.24 0.066 0.87 0.39 -0.06 -0.10 0.68 1
o, 0.45 0.033 —0.02 0.13 —0.04 0.04 —0.05 -0.03 1
41 { s Lower-bound data
| | « Equality data
3 — — ,
| //" E : 4 3
| P ~ 4
=] ¥e £%
52 4 22
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Figure 2: Measured and predicted moment demands based on (a) deterministic and (b) probabilistic models

3 PROBABILITY OF FAILURE

We now use the developed demand models to assess the fragility of an example offshore wind
turbine support structure. For this purpose we consider the configuration of a typical 5-MW off-
shore wind turbine supported by a mono-pile installed in a 20 m water depth. The structure of in-
terest is called NREL offshore 5-MW baseline wind turbine and its specifications are documented
by Jonkman et al. (2009).

Fragility is defined as the conditional probability of attaining or exceeding a specified perfor-
mance level for a given value of the vector w . Following Gardoni et al. (2002), a predictive esti-
mate of the fragility is formulated as

F}(w):P[U{g,y (x,w,@k)g()}‘w} (7
k
where g, (x,w,®,) is the £” limit state function defined as
gy (% w.0,)=C,(x)- D, (x,w,0,) ®
in which C,(x) represents the capacity corresponding to D, (x,w,®,) and j=y or » stands for
yield and ultimate performance level, respectively.
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Table 5 illustrates the proposed damage states and the corresponding performance levels. The
shear capacity is defined as the shear force in the hollow cross section of the steel tower
C, =fAB/ 4R +r*)/ (R + Rr+r*) where, f; is equal to the steel yield stress, /, for the yield
limit, and to the ultimate steel stress £, , for the ultimate limit. The yield and ultimate stresses, f,
and f,, are considered to be lognormal random variables with a mean 300 and 410 MPa (for a
structural steel of grade S235 according to EN 10 025 (2004) standard), respectively, and a coetfi-
cient of variation of 10%. In addition, C, = /.S is used to calculate the yield bending moment
capacity in which § =elastic section modulus. Finally, the ultimate bending moment capacity,
C.., is considered to be a lognormal random variable with a mean of 390.6 MN-m and a standard
deviation of 39.57 MN-m. The statistics of € are obtained using moment-curvature diagrams
constructed for the tubular cross section of the tower base, considering the stress-strain curve of
structural steel of grade $235. Monte Carlo simulations are used to estimate the fragility for each
failure mode, where all the model parameters and error terms in the developed demand models are
considered as random variables, in addition to f,and f, as already described.

Figure 3a shows the predictive fragility estimates for the example offshore wind turbine for
H, =1m and plotted as a function of the spectral acceleration S, in units of g, at the natural peri-
od of the support structure (T, =2.5 s ) within its linear elastic range, for both the yield and ulti-
mate limit states. The dotted, solid and dashed lines in the figure show the fragilities for cut-in,
rated and cut-out wind speeds, respectively. Cut-in and cut-out wind speeds are the lower and up-
per limits of the range of wind speeds in which a turbine is operating and producing power. The
rated wind speed is the wind speed at which a control system is activated to limit the aerodynamic
forces on the blades of the wind turbine and keep the power generated constant by changing the
blade pitch angle. As shown in the figure, the fragility at the rated wind speed is higher than the
fragilities at the other two wind speeds due to the higher wind speed than the cut-in wind speed
and higher operational loading than at the cut-out wind speed. However, the contribution of the
wind loading is not significant compared to the seismic excitation even for small earthquakes. In
addition, the fragility in shear failure mode is found to be negligible compared to the bending fail-
ure mode, as expected for slender elements like wind turbines towers.

Predictive fragility estimates due to ultimate limit state are also plotted as a function of the wind
speed, for different values of spectral accelerations (Figure 3b) and #H, =1m. The figure again
shows that changes in wind speed do not affect noticeably the probability of failure, especially for
large earthquakes. Tt is also found that the effect of changes in #, on the probability of failure is

negligible.

Table 5. Proposed damage states
Description Performance level

Damage state

No significant damage (ND) No structural damage. Tower base shear or mo-
ment exceeds yield limit

Support structure yields. Perma-

Permanently out-of-service (PO)

nent excessive deformations. Tower base shear or mo-
" Support structure is unable to ment exceeds ultimate limit
Complete (C) PpOr: St
carry additional loads
1 SEE— | d S -
| o Cutein wind speed | 10
| Rated wind speed - S W
0.8| -=--~ Cut-out wind speed OB !
I 7 v 055g T g
| =1 o < |
206 & i £. 2l
= = -3 = 2
- L i 2] e Y
& [ND Dyt o E E
5 0.4 fia) 5 = 3|
| g g F
Ultimate limit ok Z 2
0.2 state 3 O |
) €l @) | . ®]
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Sa’ g WS, m/s

Figure 3: Fragility estimates for a typical 5-MW offshore wind turbine
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4 CONCLUSIONS

This paper developed probabilistic models for shear and moment demands on the support structure
of offshore wind turbines subject to seismic, environmental and operational loads. Employing an
experimental design, 100 wind turbine configurations were generated to produce a virtual experi-
ment database used to calibrate the probabilistic models. Detailed finite element analyses were
conducted on the generated configurations accounting for the aerodynamic damping due to the
operation of wind turbines, the nonlinearities in the soil behavior and soil-structure interaction. A
Bayesian approach was used to assess unknown model parameters.

As an illustration, the developed demand models were used to estimate the fragility of a typical
offshore wind turbine support structure. The fragility estimates show that bending failure controls
the failure of the support structure. Also the fragility estimates show that wind speeds within the
operational range do not noticeably affect the probability of failure in case of a seismic excitation,
especially for large earthquakes.
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Reduction of the random variables of the turbulent wind field
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ABSTRACT: Applicability of the Probability Density Evolution Method (PDEM) for realizing
evolution of the probability density for the wind turbines has rather strict bounds on the basic
number of the random variables involved in the model. The efficiency of most of the Advanced
Monte Carlo (AMC) methods, i.e. Importance Sampling (IS) or Subset Simulation (SS), will be
deteriorated on problems with many random variables. The problem with PDEM is that a multi-
dimensional integral has to be carried out over the space defined by the random variables of the
system. The numerical procedure requires discretization of the integral domain; this becomes in-
creasingly difficult as the dimensions of the integral domain increase. On the other hand efficiency
of the AMC methods is closely dependent on the design points of the problem. Presence of many
random variables may increase the number of the design points, hence affects the efficiency of
the AMC methods. The idea of the paper is to propose new schemes which allow reduction of
the basic random variables of the turbulence such that PDEM and Advanced Monte Carlo (AMC)
methods, i.e. subset simulation, are applicable on it.

1 INTRODUCTION

Realizing the evolution of the Probability Density Function (PDF) of a stochastic processes pro-
vides sufficient tools for solution of many problems related to stochastic processes i.e. reliability
analysis. One important problem, of especial importance for design of the wind turbines, that fits
into this category is the failure probability estimation. However realizing evolution of the PDF
of a process is a challenging task elaborated by many scientists. One of the most recent discov-
ery in this direction may be the introduction of the PDEM (Li and Chen 2009) which represents
the hyperbolic differential equation that governs the evolution of the PDF with respect to time.
An attractive feature of this method is that it provides a decoupled equation for systems which
are governed by coupled partial differential equations i.e. nonlinear Multi Degree Of Freedom
(MDOF) structures. Nevertheless applying PDEM on wind turbines faces difficulties due to high
number of basic random variables involved in this problem.

Here we consider uncertainty of the system stems from the stochastic nature of the load e.g.
turbulent wind field. A common method to generate wind field is the random phase assignment in
frequency domain e.g. spectral method. Other methods are based on covariance matching of the
stochastic process using finite difference equations i.e. Auto Regressive Moving Average (ARMA)
models or the Markovian State Space models (Sichani 2011). However these approaches require
too many random variables in order to apply in connection with the GDEM. Indeed the spectral
method in this aspect is more favorable to the ARMA models since it requires less number of basic
random variables. Still the number of basic random variables required by spectral methods is far
beyond what the PDEM (Li and Chen 2009) can handle (Chen 2009). The number of these basic
random variables increases the number of the generated grid nodes in simulation will increase in an
exponential manner. However by using number theoretical methods this increase can be controlled
to a reasonable extent, c.f. (Fang and Wang 1993), still the number of basic random variables on
which these methods are applicable are quite limited i.e. about 20 (Li et al. 2012).
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Figure 1: Degree of freedom of the wind turbine model

This study aims at reducing the number of the basic random variables of a wind field such that
PDEM and AMC methods can be applied on the system. In this direction the Karhunen-Loéve
expansion and the turbulence simulation based on linear combination of realizations is considered.
Finally the simulation results for the latter case are compared to the Standard Monte Carlo (SMC)

results as a qualitative analysis.

2 STATISTICAL CHARACTERISTICS OF 3D TURBULENCE

The incoming turbulent wind field {v;(z;¢), (z;() € R*}, with components defined in the (21, 22, z3)
system shown in figure 1, is modeled as a zero mean Gaussian homogeneous and stationary pro-
cess with the cross covariance function

ki (0it) = Elvi(ziti)vy(2eit2)] , r=20—2z1 , T=ta—1 (1)

The IEC code of practice for wind turbine design, (IEC 2005), admits the application of the Taylor
hypothesis of frozen turbulence which states that the eddies are fixed to and advected by the mean
flow; hence the fundamental properties of the eddies will not change as they pass through the
turbine (Panofsky & Dutton 1984)

¥5(21, 22,23, t) = O(21 — Vit, 22,23) @
resulting in the following cross-covariance function
i (0, 7) = Rij(r1 — VaT, 72, 73) 3)

where £;;(r) = E[0;(21)7;(22)] is the cross-covariance function of an arbitrary frozen turbulence
field {7;(2),z € R®}. Due to the shear the frozen field is not isotropic, (IEC 2005). Especially a
negative correlation is present between ¥ (z) and ©5(z). Further, the underlying spectral tensor is
determined based on rapid distortion theory (Townsend 1980). This means that the realizations
fulfill the linearized Navier-Stokes equation and the continuity equation. V; is the mean wind
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velocity in the z; — direction orthogonal to the rotor area, c.f. figure 1. In the following, merely
homogeneous isotropic turbulence will be considered in which case, (Batchelor 1982)

ﬁij(r) = US (i%;gﬂﬁ?"j -+ g(T) 51';') 5 i,j = ].j 2,3 y T = H[‘HQ (4)

o is the variance of the turbulence, and f(r) and g(r) denote the auto-correlation coefficient

function for turbulence co-directional to r and in an arbitrary direction orthogonal to r. Due to

incompressibility the functions f{r) and g(r) can not be chosen arbitrarily but are related as
(Batchelor 1982) -
rdf(r

9(r) = £ )+ 55 ©)

Normally, the undetermined function is given in the wave number space in terms of the 3D-

energy spectrum function £(k). For this von Karman’s semi-analytical suggestion will be applied

(Karman 1948)

k= k|2 (6)

_ 2% _T(®) (kL)*
Bk) = Lovg P(%);(é) (1+ (kL)2)17/6

L is the integral length scale, which defines the linear range within which the velocities have
considerable correlation, defined as

o0 (o o]
L =f flr)dr = 2/ g(r)dr 7
0 0
Based on this the correlation coefficient function may be shown to be

f(r)= m(ﬁoT)”Ku(ﬂor)
’ (3
g(r)= Fi(y—)(ﬂor)” [Ku(!’vo?") — %Kfzy(ﬁo’r)]

where ko = 1/L, v = 1/3, K, (-) is the modified Bessel function of second kind and I'(") is the
Gamma function.

3 REDUCTION SCHEMES

From the reliability point of view, obtaining information of the evolution of the Probability Density
Function (PDF) of any problem is highly bounded to the basic random variables of the problem
(Sichani 2011). However it is shown by the author that Asymptotic Sampling (AS) (Sichani et al.
2011) and Enhanced Monte Carlo (EMC) simulation (Sichani et al. 2012) can handle this difficulty
reasonably, still most of the methods for reliability analysis, such as Importance Sampling (IS) or
Subset Simulation (SS), will face difficulties in such circumstances(Hurtado 2012; Sichani and
Nielsen 2012). In this view reducing the number of basic random variables will be useful by
extending the range of applicable reliability methods.

We try two different reduction schemes; fist we use the Karhunen-Loéve transformation which
approximates the process based on its eigen-functions. Second, the reduction based on random
combination of base realizations. It should be noted that the aim of these reductions is to provide
identical results as that of the SMC for the extreme value distributions of the responses of the wind
turbines. Therefore primarily both reduction schemes are checked and the one with more attractive
features is tested on a wind turbine model. In this stage we use a reduced order 5 Degrees Of
Freedom (DOF) wind turbine developed in previous studies, (Sichani 2011). The model consists
of three DOFs, one at the tip of each blade, one DOF for its tower at the hub level and one for the
azimuth angle shown in figure 1. The rotational speed of the rotor is kept around its nominal value
by a PID controller. The failure even is defined as: the displacement of the tip of the tower within
the time T € [0,600]s of simulation exceeds the threshold level b
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Figure 2: Simulated turbulence with truncated terms in KL expansion; a) Turbulence realizations,
b) Correlations of truncated processes, ¢) Normalized eigenvalues of the KL expansion

3.1 Karhunen-Loéve expansion

Only turbulence in the z; direction is considered for which reason
Enlr] =eilr) ©)

Then {v;(z),z € R*} admits the Karhunen-L‘oeve expansion
B(z1) = Y& Ai85(2) (10)
i=1

where & ~ N (0,1) are set of iid random variables, e.g. E{£:£;} = di;, which form the basic
random variables. (A;, ¢;(z1)) are obtained as solutions to the homogeneous Fredholm integral
equation of the second kind (Tricomi 1985; Press et al. 2007)

rr?,f flz1 = y1);(n)dyr = Ajdi(z1) (11)
-0
the eigenfunctions fulfill the orthogonality condition

| aitcsirac =5 (12)

the process may be approximated by retaining the first say s largest eigenvalues and their eigen-

vectors. s
B(z1) ~ Y &/ Aoi(z) (13)
J=1

The error in reconstruction of the autocorrelation function will therefore be e = Zj; 11N B (z1).

In order to check feasibility of applying this technique on a turbulent wind field with the grid
of 31 nodes on each plane in the frozen field, c.f. (Sichani et al. 2012), is simulated. Two samples
of the turbulence at hub level using the truncated KL expansion terms with s = 20 and s = 249
terms are shown in figure 2.a. The quality of the reconstructed correlations of the processes of this
approximation are shown in figure 2.b. From this figure it is clear that the approximated autocorre-
lation function by only 20 terms in the truncation is not conforming well with the target correlation
function which was already expected considering figure 2.a. The ratio E, = 3°7_ X/ S ), is
an indicator of the percentage of the energy of the true signal which is presented by the truncated
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Figure 3: Simulated turbulence with truncated terms in KL expansion; a) Normalized eigenvectors
of the KL expansion, b) Covariance function of the process and its approximation

approximation. Figure 2.c shows the normalized eigenvalues of the KL sorted and in descend-
ing order. This figure reveals that eigenvalues approach zero rather slowly; hence many terms
are needed to be kept in truncation. In order to get a good approximation this ratio should be
roughly F > 0.95. This ratio for the signal truncated with s = 20 is Ey = 0.71. In order to have
E, > 0.95, it is seen that & = 249 for this case. A sample of the reconstructed signal with 249
terms and its related covariance matrix are shown in figure 2.a. It can be concluded that roughly
speaking less than 100 terms in the KL expansion leads to very poor estimations of the turbulence
process. lt is clear that as the number of processes increase, the number of terms needed to be kept
in truncation of the KL expansion increases. This is still too many variables for our purpose, e.g.
PDEM application, therefore this approach is not considered appropriate for reduction and is not
followed in this study.

Covariance function of a homogeneous turbulence process fulfills #11(0) > &1 (r). Figure 3.a
shows the eigenvectors of the turbulence covariance matrix. As can be seen, these are harmonics
with different frequencies hence their linear combination, i.e. approximated covariance function,
may not fulfil the homogeneity condition. The approximated curve with only fours eigenvectors
together with the target covariance function is plotted with green ink in figure 3.b. In this case in
order for the approximated process to fulfill the homogeneity condition s 2 280. Hence the homo-
geneity requirement of the approximation results in similar though more number of eigenfunctions
to be used in the approximation as that of energy criterion.

3.2 Random combination of base realizations

In the previous section it was shown that simulating turbulent wind field with less than 100 random
variables by the KL expansion leads to severe lack of information about the process. Anyway this
may be useful for AMC but definitely not for PDEM. In order to circumvent this problem we
take another approach into consideration. Here we try combining a set of turbulence realizations,
generated based on a method with correct correlation function, i.e. spectral or ARMA method,
* with proper random weights. The weights should be adjusted such that the second order moments
of the combined process is equal to the target e.g. (14).

7i(z) = Y i (2) (14)
p=1

where ¥(z) are bases of the expansion, we call them base realizations hereafter, and ¢; ~ N0, =,
If ¥(7) (2)s fulfill the linearized Navier-Stoks and the continuity equation, so will ¥(z) for any value
of (,’s. Here we assume identical correlation structure for all base realizations. The correlation
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Figure 4: Exceedance probability of the response of the wind turbine; high probability region

structure of the synthesized process ¥ on the left hand side of (14) can be computed as

Rijlr ZZE{cpcqv(”(zl) b (zz}—ZZE{cpcq}E{v”) 2)i @)} (5)

p=1g=1 p=1g=1

Since (j,’s are independent identically distributed variables
-‘.ﬁfz‘j(?") — SU?kij(?") = I%;J(T) (16)

This is a simple yet feasible to be applied on a wind turbine model. Therefore this approach is
tested on the wind turbine model. Figure 4 shows the Cumulative Distribution Function (CDF) of
the failure event c.f. section 3. 5 sets of Monte Carlo simulations, each one with 15000 samples
have been carried out where excitation is considered as the linear random combination of s base
turbulence processes according to (14). The results of simulation with s = 5, 10, 25, 50 are shown
in figures 4.a, 4.b, 4.c and 4.d respectively. The solid line indicated the CDF of the Standard
Monte Carlo (SMC) simulation of same quantity with 4 x 10° samples. It is clear that the CDF of
the samples generated by linear random combination of the processes as excitation deviate from
that of the SMC. Nevertheless the deviation tends to disappear as the number of base processes
increase from 5 to 50. Figure 5 shows the CDF for the exceedance probability with focus on the
tails of the distributions. It seems that by increasing the number of the basic random variables with
this method it is possible to get qualitatively similar results as that of the SMC. However it is noted
that SMC involves much higher number of basic random variables.

4 CONCLUSIONS
Conventional methods for this purpose require many random variables to be used i.¢. of order 10

or more. However handling reliability problems which involves so many random variables is a very
difficult task. Therefore any scheme which allows reduction of this number without significant
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Figure 5: Exceedance probability of the response of the wind turbine; low probability region

loss of accuracy makes essential improvements in reliability analysis of these structures. This
paper assesses efficiency of the Karhunen-Logve (KL) transformation as a reduction scheme when
applied on a turbulent wind field. It is seen that the reduction of the random variables with this
scheme is good but still ways more that the strict bounds on the newly developed methods such as
the PDEM. Therefore another scheme based on the sums of the processes is proposed in the paper
which is to be applied on a wind turbine model. The elaborated simulations suggest that using
linear random combination of turbulence realizations has the potential to reproduce similar results
as that of the SMC. Moreover fine tuning and careful selection of the base processes can improve
efficiency of the method i.e. less random variables.
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ABSTRACT: The subset simulation method is considered to be one of the most powerful methods
among the variance reduction Monte Carlo techniques. Potential shortcomings of the method are
the bias in its estimations and potential challenges in finding important directions in high dimen-
sional nonlinear problems. The important directions in the n-dimensional space of the problem
are those toward which the failure region extends i.e. by moving in those directions the simulation
will fall into the safe domain. It is clear that finding these important directions becomes increas-
ingly difficult as the number of the basic random variables of the problem increases. Moreover
when the failure domain of the problem is not a simply connected domain, e.g. failure islands,
finding the correct direction, or island, becomes even more difficult. This case occurs frequently
in time variant dynamic reliability analysis of nonlinear systems. It is interesting to determine
applicability of the Subset Simulation (SS) techniques, as a powerful representative of Variance
Reduction Monte Carlo (VRMC) methods, on the wind turbine systems specifically with an active
controller. Hence in this paper we apply and discuss these methods on a benchmark wind turbine
model and analyze the results in view of their applicability.

1 INTRODUCTION

In order to estimate the return period of the wind turbines (IEC 2005a) it is necessary to estimate
the first passage probability, alternatively called failure probability, of these systems. For this aim
the IEC standard recommends fitting one of the extreme value distributions, i.e. reversed Weibull
or the Gumbel distribution, to the peaks extracted from six epoches of 10min. duration, of the
wind turbine data (IEC 2005b). Unfortunately the choice of Extreme Value Distribution (EVD)
combined with the part of the data used to find EVD parameters result in considerably different
extrapolated design values. Alternative to extreme value curve fitting and extrapolation, simulation
techniques may be used for estimating these return periods. The natural choice for this purpose is
the Standard Monte Carlo (SMC) simulation. The computation cost of this approach is however
far beyond reach of the available computers’ power even on a modern machine. This is since wind
turbines have rather complicated dynamic models which ends up in a high dimensional nonlinear
Limit State Function (LSF). The nonlinearitics coupled with high dimensions of LSF is enough to
make the problem very difficult to solve (Valdebenito, Pradlwarter, & Schueller 2010; Katafygiotis
& Zuev 2008). Therefore a method that can handle these problems with reasonable effort could
be of great interest in this area. The Variance Reduction Monte Carlo (VRMC) methods are an
alternative choice which are able to produce estimations similar to SMC but with less variance.
The Subset Simulation (SS), introduced by Au & Beck (Au & Beck 2001), for estimation of small
probabilities of high dimensional systems is reportedly one of the most powerful techniques in
the field of structural dynamics. An advantage of SS over the other VRMC methods, such as IS,
is its capability in handling high dimensional and complicated problems within reasonable effort
(Schueller & Pradlwarter 2007). Recently two new algorithms have been proposed to increase the
efficiency of the subset simulation (Santoso, Phoon, & Quek 2011; Zuev & Katafygiotis 2011).
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These algorithms tackle the problem by the way they generate the conditional samples of the
problem. The first algorithm (Santoso, Phoon, & Quek 2011) aims at increasing the quality of the
estimates by decreasing the correlation of the chains which are generated during simulation e.g.
Markov Chains. The other algorithm (Zuev & Katafygiotis 2011) improves the performance by
delaying the rejection of the generated Markov Chain in the Limit State Function evaluation. In
this article a nonlinear model of a wind turbine according to (Sichani, Nielsen, & Bucher 2011;
Sichani, Nielsen, & Naess 2011) is used as a benchmark for analysis of the applicability of these
methods. The discussed algorithms are applied to this benchmark problem and the results in terms
of their bias and capability of estimating low probabilities are studied.

2 SUBSET SIMULATION

Assume that the LSF is defined as G/(X) where X consists of the random variables of the problem.
The barrier level b; which corresponds to a sample of X, i.e. x;, is then given by b; = G(x;).
In view of structural dynamics X can be recognized as the stochastic excitation within a given
time duration and b as the maximum of the magnitude of the response to the given excitation. The
strategy of the SS is to obtain samples of b which have low probability of occurrence, starting
by that which can be accuractely estimated with low number of simulations e.g. b1, Next, this
barrier level will be increased gradually until the highest(required) barrier level or probability is
estimated with desired accuracy. This is done by defining intermediate probability levels py =
pgcm) < p;m_l) Bar & p(f]') corresponding to the intermediate barrier levels & = p(™) = p(m—1)

-+ > b(1). Using this property taken from the fact that the first passage probability can not increase
as the barrier level increases, the required first passage probability ps can be written as

_n00H) 5, (6) "
Cop (M) p(00)
pr(6®61)) is the conditional probability of exceeding b2 on the condition that () is exceeded.

Using Equation (1) the final first passage probability, i.e. the lowest first passage probability re-
quired, may be written as the following product

pf(b(z)\bm)

m—1

pr(®) =pr (61 T ps (801 63) 2

i=1

The SS method aims at estimating each of the m terms on the right hand side of Equation (2) by
some type of Monte Carlo simulation. Therefore it is beneficial to let the barrier level be chosen
after simulation of each stage is performed and fix the intermediate first passage probabilities
associated with them. All the terms in the product are chosen large enough so that they can be
estimated with low number of samples i.e. py = 0.1 in conjunction with Equation (3).

ps() = p 3)
pr(BEDPE) = py |, i=1,-m—1

b1}, with its probability Dr (b(l)) = po, is determined by performing SMC with low number of
samples, i.e. Ny;m = 500, as the (pg % Ny, )" barrier level when all simulated barrier levels are
sorted in descending order. The conditional probability terms on the right hand side of Equation
(1) cannot be estimated by SMC and need a technique which is capable of generating samples
conditioned on the previous samples. For this reason those samples of X(!) which correspond to
the barrier levels higher than (1), the so-called seeds, are saved for simulating next generation of
the excitation. This consists of Ny.eq = py X Ny, seeds to be kept in memory. In the next section
the original Metropolis-Hastings algorithm is described which is the basis for the conditional sam-
pling. In the following sections the proposed modifications are explained with emphasis on their
difference with the original algorithm.
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2.1 Metropolis-Hastings algorithm

Let z(k‘) denote the samples of a discrete stochastic load process X (k) at the instants of time

=il g - in the reliability analysis these refer to the basic random variables used to generate
thc loads - The random variables X (k) are assumed to be mutual independent and identical dis-
tributed with the Probability Density Function(PDF) r(z(k)). X (k) is assembled in the random
vector X with the Joint Probability Density Function(JPDF) 7(x). Due to the iid components 7 (x)
becomes as indicated in Equation (4). It should be noted that in our context the random variables
X (k) refer to neither the time samples of the turbulence process nor the response of the wind tur-
bine. These are the basic random variables which will be transformed into the turbulence process
(Sichani 2011). Correspondingly the samples are stored in the vector x. Let X(® and X(+1) denote
stochastic vectors representing (or transformed into) the load process, when changing from barrier
level 5 to barrier level B+, Both of these vectors are identical distributed, but not indepen-
dent. The transition kernel, or alternatively called the proposal distribution, that X = x moves
to X+ is shown by p(XEFD|X(@), Due to the independence and identical distribution of the

components within X1 and X, respectively, this may be written as
, N
r(x®) = kl:[lﬂ{x(z) (k)
o N ‘
p(X(H'U \X%) = H p(m(wl) (k)‘:n(ﬂ)(k))

where m(-) and p(- ) are the one dimensional PDFs of the discrete components X (k). Consider
“Ngim” samples {x1 ), X ) m} of X% from the ™ simulation level. The transition kernel

)

that X = x;.) moves to a state in X+, e.g. p(XOFI X0 = xgi)), can be chosen with the

mean value x@, but can otherwise be arbitrarily chosen (Santoso, Phoon, & Quek 2011). For
instance a uniform or Gaussian distribution with an arbitrary standard deviation, such as the sam-
ple standard deviation of the seeds (Au, Cao, & Wang 2010), and its mean value at the value

of :17(1 for k =1,.--,N. Initially a candidate &, for X(H'l),j =1, ,Ngy, is drawn from
¥ j

(- ix 2) ). In order to ensure that samples of X(H']) generated by MH will also be distributed
with d1str1but10n (), at 1s necessary that the so- called ‘reversibility condition”, which states that
(€;) p(x; )\5 )= Ti'( ) (Ej\x ) be satisfied for all samples of xg and &; (Chib & Greenberg
1995 Santoso Phoon, & Quek 2011) For this reason Equation (5) is used as the probability of

accepting candidate samples.

; . (&) p(x€;)
a(xg)’fj) :mm{l,m} 5)
gl J

(1) — ¢, with probability

Next, £, is accepted as the next sample, e.g. X;

Rl (P R (6)
5 -P- Q(Xj i)

where the term w.p. means “with probability”. Therefore after generation of a candidate sample £;

a random number is drawn from a uniform distribution between 0 and 1 e.g. ¢(0, 1). If this number

is less than a(xﬁi) € J) of Equation (5), &; will be accepted as the next sample; else will be rejected
and replaced by the seed x\"). This procedure guarantees that the distribution of the samples will

not be changed as barrier levels increase (Hoff 2009). In case the proposal distribution is chosen
to be symmetric, i.e. p(B|A) = p(A[B), it is called the random walk Metropolis Hastings and

Equation (5) reduces to
w(&(;))) } %)

(X;

(] €)= mm{l,
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2.2 Conditional probability estimation

The method follows the procedure described in section 2 that started by a SMC and defining the

first barrier level b1). In the next step(s) {Vsim candidate samples for xu,E-Hl) s F =lwes e Ngio
will be generated using a conditional sampler, i.e. MH. The next generation of excitations are
conditioned on a randomly chosen seed of the previous simulation. If £; is accepted according
to Equation(6) using either Equation (5) or Equation (7), the second accept\reject test will be

performed as

‘ g if €3V

X?JFU _ Zz) . J , (8)
x;0 if & ¢ FU

J
where § denotes the failure domain of the i level e.g. 9 = {£,|G(€;) > b}, Equation
(8) means that §; is accepted (after being accepted in the accept\reject test of the MH) only if it

increases the barrier level to higher than b(*), else is rejected and replaced with its seed. This step
provides the estimation for the conditional terms in Equation (2) and will be repeated rn — 1 times,
c.f. Equation (2). The same strategy that was described in section 2 for choosing barrier levels and
seeds will be used in all m — 1 stages of the simulation. This results in

p}=§;’—_ZI$(L;(x§i)) , i=1,-,m (9)

pj} represents the minimum failure\first passage probability calculated in the i** step of the sim-
ulation. pf{l means pp raised to power “4 — 17, Iz (xj(-i)) is the indicator function which will be
one if the response to xgi) lies in the 7** intermediate failure domain and is zero otherwise.

2.3 Modified Metropolis-Hastings algorithm

The MH algorithm as presented in section 2.1 breaks down in high dimensional problems. This is
since the probability of moving from xff) to £, defined as Equation (5), decreases exponentially
as the number of basic variables - dimension of the problem - increases (Au & Beck 2001). There-
fore Markov chains do not move so frequently from their current state to the next state and get
stocked where they are. This problem can be solved by taking advantage of independency between
candidate coordinates(components) and breaking the N-dimensional JPDFs w(xg‘)) and p(.lxﬁ;i))
into their corresponding N independent one dimensional PDFs Tr(z;i) (k)) and p(|m§?) (k)) respec-
tively. Accordingly probability of accepting the next state for each sample is defined independently

as
- (8)) p(z;” () ()
a(z®? (k), &(k)) = min {1, ﬁ(gj(k)) p(lj ( : } (10)
RRSI w(af) (k) p(& (k) |25 (k)
which in case of symmetric proposal distribution p(B|A) = p(A |B) reduces to
a(z(k ,€i(k)) = min —-—T(gj(k)) }

Next, the accept\reject test will be performed for each component of each realization. So for
k=1, ,N

2D () — { k) wp. a(zP(k),& (k) -

’ #P(k) wp. 1—a(al (k)& (k)
This process will be repegted fory =1,---, Ny, times to generate the next set of excitations i.e.
X0+ = {xgw-l)’ e ,x‘(,:,::} This modification is proposed in (Au & Beck 2001) and is called
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the Modified Metropolis-Hastings (MMH). Hereafter when this sampling scheme is used for the
SS, it is invoked by the term SS-MMH.

2.4 Modified Metropolis Hastings with Reduced Chain Correlation

The Modified Metropolis-Hastings with Reduced chain Correlation(MMHRC) is recently pro-
posed by (Santoso, Phoon, & Quek 2011) which aims in reducing the correlation between the
Markov chains in the MMH. In view of the sample generation MMHRC follows the original MH
algorithm based on Equation (5), Equation (6) and Equation (7), i.e. the N-dimensional JPDF is
used. However every time the generated £; is rejected according to Equation (6), a new sample is
generated conditioned on the same seed. This process is repeated as many times as needed to let
the generated candidate be accepted by Equation (6). Clearly this modification takes more time for
sample generation compared to MMH. SS-MMHRC shows good performance for low to medium
dimensional problems i.e. N < 100 (Santoso, Phoon, & Quek 2011). However on the numerical
simulation performed in this study, see section 3, the Markov chains generated by MMHRC have
high tendency to stay in the initial state, i.e. a(xgz),ﬁj) ~ 0. This means that the barrier level is
rarely increased. This is due to the high dimensions of the problem which is the same problem that
causes breaking down of the original MH algorithm in high dimensions (Au & Beck 2001).

2.5 Modified Metropolis Hastings with Delayed Rejection

Following the idea of (Tierney & Mira 1999) the so-called Modified Metropolis-Hastings with
Delayed Rejection (MMHDR) is proposed by (Zuev & Katafygiotis 2011). Here the MMH ap-
proach is followed for generation of the conditional samples. Although in case a candidate sample
does not belong to the failure region, ie. §; ¢ % in Equation (8), it will not be rejected and
will be given a second chance. In such a case the components of the candidate &, e.g. £;(k), are
divided into two non-overlapping sets. Set T' = {k | xff)(k) = £;(k)} which consists of the set of

coordinates which have evolved to new states; and its complementary set 7' which includes the
rest of the components. Next, the coordinates which belong to T' will be given another chance
to evolve to a new state £(2). The proposal density of moving to §§2J(k), e.g. q(.{x?) (k),&(k),
can in general be chosen different from the proposal density of moving from zg.i) (k) to &;(k),
e.g. p(\wff) (k)). It should be noted that the candidate samples for 55-2) are again generated around
the original seed zgi)(k) and not £;(k) i.e. q(.ixéi)(k),gj(k)) = q(.\;r?)(k)) (Zuev & Katafygiotis
2011). The probability of accepting the new samples conditioned on the two previous samples is
defined as (Tierney & Mira 1999)

@* (5 (k), & (R), £ (8)) =

(2 () p(& (Rl (k) (13)

where a(gj(k),ff)(k)) determines the probability of moving from £;(k) to .gf)(k) in the same
manner as defined in Equation (10). In case that both transition kernels are chosen symmetry

163



Equation (13) reduces to

a* (2" (k), & (k), €7 (k)) = min {1,
(14)
p(& Wl () min {m (" (k). (5 (k) |
p(&;(0) 1= (k) min {m (2" (), m (& (k) }

where in Equation (14) the equality @ x min {1,b/a} = b x min{1, a/b} is used which is true for
any positive pair {a,b}.

3 SUBSET SIMULATION ON WIND TURBINE

The time duration for simulation is chosen 800[sec] where the first 200s are discarded to take
into account the effect of the transient phase of the system response. The rest simulates 2 10min.
interval which is prescribed in design codes for extraction of probabilistic behavior of the turbines
(IEC 2005b). The resolution of the time integrator is set to At = 0.2s. Turbulent wind field is
simulated on 31 nodes, one on the hub and others at 0.8 radial distance from hub on an equi-
distance angular grid. The mean wind is set to V. = 15[m/s| and the cut-in and cut-out speeds are
set to V; = 5[m/s] and V, = 25[m/s] respectively. The limit state function is defined as the first
passage of the magnitude of the tower displacement from the threshold (barrier) level bie. pr(b) =
Prob {tr?%] |z4(t)| = b) with 7" = 600[s| of simulation. Discarding the transient simulation time,
€[0,

the LSF is defined as a function of 93000 stochastic variables. Failure probability of the model is
estimated by SS compared to the SMC with 4.95 x 10° samples.

A practical issue is the very high number of the basic random variables, e.g. the iid Gassian
random numbers which will pass through the turbulence filter, needed to be stored in the memory
for the next stage of the simulation. These consists of seeds for two consecutive simulation levels
which contains 2/N,..q sets of basic random variables requiring approximately 12MB of disc space
for only one simulation. Therefore a simulation with 500 initial samples and py = 0.1 requires
approximately 1.2GB memory (or disc space) to save 2Ng..q = 100 seeds for two simulation
levels. The proposal distributions are chosen uniform centered at the sample seed with spread
equal to 2 times standard deviation of the seeds of the previous level. Figures la and 1b show
estimates of the first passage probability of the fixed speed wind turbine with SS-MMH and SS-
MMHDR respectively. In both figures number of samples is Ny, = 500 and probability increment
is set to pg = 0.1. Each figure shows 10 estimates of the first passage probability with SS together
with the SMC results. The thick solid lines the figures show the SMC simulation results. The
figures show that both methods are successful in increasing barrier levels and their estimates are
close to that of the SMC. However SS-MMHDR results suffer from small over estimation of the
first passage probability at high barrier levels. Figures 2a and 2b show the estimates of the first
passage probability of the variable speed wind turbine. The figures show that presence of the
controller has considerable effect on first passage probability estimation. The controller not only
changes the range of barrier levels but also makes the estimation of the first passage probability a
more difficult task. As seen in figures 2a and 2b both methods have rather poor estimates of the
first passage probabilitics of order 10~7 for the variable speed wind turbine case. For the fixed
speed wind turbine the value py = 0.1 is shown to be a good choice and both methods overcome
the difficulties faced by high dimensions of the model. However the variable speed model has
difficulties in estimating very low probabilities.

4 CONCLUSIONS

The low first passage probability of a reduced order wind turbine model is estimated based on
the Makov Chain Monte Carlo. A well-known method for this aim, e.g. SS-MMH, with two of
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Figure 1: First passage probability estimation of the fixed speed wind turbine; 6 stages with
po = 0.1, a) Subset simulation with MMH sampling scheme b) Subset simulation with MMHDR
sampling scheme
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Figure 2: First passage probability estimation of the variable speed wind turbine; 6 stages with
po = 0.1, a) Subset simulation with MMH sampling scheme b) Subset simulation with MMHDR
sampling scheme
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the most recent modifications to the original algorithm have been implemented and compared
to the original method on the wind turbine model. The estimated first passage probability of the
fixed speed wind turbine with SS-MMH is in good agreement with SMC. On the other hand SS-
MMHDR results have small over estimations in their predictions. Nevertheless estimations of the
first passage probability of the variable speed wind turbine is more difficult. The results show that
in high dimensions the chains constructed by SS algorithms do not move to the next state often,
and tend to stay in their initial state.

In most nonlinear problems the failure domain of the problem is not a continuous region but a
set of the so-called failure islands surrounded by the safe domain. Therefore scaling up an excita-
tion which belongs to the failure domain, may end in the safe domain. In case these islands are not
small and distant from each other, i.e. the fixed speed model, Markov chains have a fair chance to
increase the barrier level as they evolve. However finding the directions toward which (the islands
in which) the barrier level increases becomes increasingly difficult as the islands shrink or their
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distance increases. This seems to be the case in the variable speed wind turbine model. The afore-
mentioned reasons seem to be responsible for deterioration of the performance of the method in
estimating the small failure probabilities of the variable speed model.

Results of this study show that subset simulation will suffer from presence of too many basic
random variables in dynamic reliability analysis of wind turbines. Hence further research should
take direction toward decreasing the number of the basic random variables to as few as possible.
This is possible by using reduction schemes such as Karhunen-Logve expansion or stochastic
harmonic functions. Reducing the number of basic random variables however may affect the shape
of the LSF of the problem and make it more complicated. These changes may be more design
points, irregularities or discontinuities. It is already suspicious that the wind turbine model has
discontinuous LSF; so reduction of the number of random variables may make it worse.
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Fatigue reliability of offshore wind turbine systems
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ABSTRACT: Optimization of the design of offshore wind turbine substructures with respect to
fatigue loads is an important issue in offshore wind energy. A stochastic model is developed for
assessing the fatigue failure reliability. This model can be used for direct probabilistic design
and for calibration of appropriate partial safety factors / fatigue design factors (FDF) for steel
substructures of offshore wind turbines (OWTs). The fatigue life is modeled by the SN ap-
proach. Design and limit state equations are established based on the accumulated fatigue dam-
age. The acceptable reliability level for optimal fatigue design of OWTs is discussed and results
for reliability assessment of typical fatigue critical design of offshore steel support structures are
presented.

1 INTRODUCTION

The wind turbine industry is growing fast. Offshore wind turbines (OWTs) are placed at sites
with larger water depths and harsher environment far away from the coast, implying that fatigue
and corrosion deterioration processes becomes very important. In order to minimize the cost of
energy (CoE), it is important to optimize the design of the substructures with respect to the fa-
tigue limit state. Wind turbines need to be analyzed and designed taking in account complex
loads interacting together and highly influenced by the wind turbine control system. The wave
and wind loads influence the dynamical behavior of OWTs resulting in increased fatigue dam-
age on the substructure. Different regimens of equivalent turbulence intensity can be analyzed
and modeled by aerodynamic codes such as FAST, see Jonkman & Buhl (2005). This code in
this paper is used to estimate the wind fatigue load effects, see section 2.

Experience from the oil & gas industry can be used to assess the factors influencing the costs
for the design, inspection, repair and failure of OWT substructures. In the oil & gas industry,
probabilistic tools have been developed. Design equations and limit state equations are devel-
oped using these principles in order to optimize the design of offshore wind turbine substruc-
tures with respect to fatigue loads. The fatigue life is modeled by the SN approach, see section
3. Design and limit state equations are established based on the accumulated fatigue damage.
The acceptable reliability level for optimal fatigue design of OWTs is discussed and results for
reliability assessment of typical fatigue critical design of offshore steel support structures are
presented in section 4.

2 WIND TURBINE MODEL
Substructures such as jacket type are difficult to simulate in conventional aercelastic codes.

Therefore, in this paper is assumed that the OWT can be simulated as a fixed-bottom monopile
with rigid foundation representing an equivalent jacket OWT substructure in order to obtain rep-
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resentative hot spots stresses. The behavior of the representative SMW NREL OWT model is
simulated using the aeroelastic simulation code called FAST (Jonkman et al. 2009). The water
depth is assumed to be 30 m and the blades are controlled with pitch active control. The wind
field is simulated by different equivalent wind turbulence intensities based on the reference tur-
bulence intensity, ‘I.¢". For this study, ‘I is equal to 0.12 (low turbulence) corresponding to
the 90% quantile of the characteristic value in IEC 61400-1 (2005); see table 1 where equivalent
turbulence intensities are shown for different mean wind speeds ‘U’ and quantile values ‘Py.,,” of
the turbulence intensity modeled by a LogNormal distribution (according to IEC 61400-1
(2005)). These equivalent wind turbulence intensities were the main input into Turbsim (Turbu-
lent-wind simulator); see Jonkman (2009), to generate the turbulence field for each equivalent
turbulence intensity. The Turbsim output is used as input into AeroDyn which is a set of rou-
tines used in connection with FAST to model and predict the aerodynamics of horizontal axis
wind turbines (Moriarty & Hansen 2005).

Table 1. Equivalent wind turbulence intensities, Ioq,-

U Pr=0.10 P, =030 Pr.,.=0.50 P,..=0.70 P, =0.90
mis  L,(%) Loy %) Log(%) 1oq(%) Loy 5)
4 7.0 8.5 9.5 10.5 12.0

6 T 9.0 9.9 10.7 12.0

8 8.3 9.4 10.1 10.9 12.0
10 8.7 9.7 10.4 11.0 12.0
12 9.0 9.9 10.5 11.1 12.0
14 9.3 10.1 10.7 11.2 12.0
16 9.5 10.3 10.8 113 12.0
18 9.7 10.4 10.9 11.3 12.0
20 9.9 10.5 11.0 11.4 12.0
22 10.0 10.6 11.0 11.4 12.0
24 10.2 10.7 11.1 1L5 12.0

During the simulations an initial blade pitch angle between 0 and 9 degrees is selected suita-
ble for the given simulation in order to keep the power and rotor speed at rated values. A time
series of 70 minutes was simulated. However, the first 10 minutes were eliminated in order to
obtain a wind turbine behavior similar to operational conditions without any disturbance from
initial conditions.

Once the turbine response has been simulated, a point between sea water level and mudline
was chosen (around 16 m of height from the mudline). This point will be considered as a repre-
sentative hot spot where the bending moments and stress concentration are important. The bend-
ing moments are calculated considering normal operating conditions with the wind turbine rotor
perpendicular to the wind direction. The distribution of wind directions are not taken into ac-
count. Therefore, the reliability indices calculated can be considered conservative. After model-
ing, the stress ranges are grouped in intervals by a rainflow counting analysis in order to calcu-
late the frequency at each wind speed bin. For reliability assessment the OWT can be modeled
by a system consisting of hot spots and their interrelations (stochastic and functional interde-
pendencies). This paper only considers a reliability analysis in a critical hot spot.

3 PROBABILISTIC MODEL FOR FATIGUE FAILURE
3.1 Assessment of reliability

This section describes how the reliability of the fatigue critical details can be performed using the
SN-approach with SN-curves in combination with the Miner’s rule as generally recommended in
codes and standards, see e.g. EN 1993-1-9 (2005), IEC 61400-1 (2005), DNV (2010), and GL
(2005).

If a bilinear SN-curve is applied the SN relation can be written (Faber et al. 2005):
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where K, m; = material parameters for N < N¢,; K, my = material parameters for N > N¢; As =
stress range; N = number of cycles to failure; T' = material thickness (50 mm); T, = reference
thickness (25 mm); and a = scale exponent that depends on the detail considered, see DNV-RP-
C203. Further, it is assumed that the total number of stress ranges for a given fatigue critical de-
tail can be grouped in n, groups/intervals AQ; such that the number of stress ranges in group i is
n; per year. (AQ;, n;) is obtained by Rainflow counting. Therefore, this procedure is applied for
each simulation model with different equivalent wind turbulence intensity.
The code-based, deterministic design equation using the Miner rule is written

P’l
Go1-3 Yy s PN T A=) @
ik K ! ik KZ i
AQ T :
where :_ﬂ[_] = stress range ‘k’ given mean wind speed V; and turbulence o, (90
' z T
ref

% quantile); n;js = number of stress ranges equal to (AQ;;-sx/z) given mean wind speed V; and
turbulence g, ; P(V3) = probability of mean wind speed at bin number ‘i’; AQ; = range of load

effect (pmpomonal to stress TANge 5 in group ‘i’); z = design parameter e.g. cross sectional
area; Trar = fatigue design life; Ki© = characteristic value of K; (logK:® equal to the mean of

logK; minus two standard deviations of logKj).

The probability of failure (and the corresponding reliability index) is calculated using the de-
sign value ‘z’ which is determined from the design equation (2) and used in the following limit
state equation to estimate the reliability:

g=A- zzz Ho, v

where A = model uncertainty related to Miner’s rule for hncar damage accumulation. A is as-
sumed to be Log-Normal distributed with mean value=1 and coefficient of variation COV,;

AQL 1 T
5 =Xy Xy Zﬂ({_

Ty

ty; mi = number of stress ranges equal to (AQj / z) during 60 minutes given V; and 0, ;
il

K) PV)=0 3)

a
j = stress range ‘k” given V; and o, ; I= (0, / V;) = turbulence intensi-
J 7

P( o, ,"V-) = probability of turbulence in the bin number j’. According with the table 1, the dis-
J =02 and o, are the quantile values: 0, =10%;

=30%; o, =50%; o, =710%; 0, 790%.

sy

A representative stochastic model is represented in the table 2. The COV values for Xgcrand
Xw should be associated with specific recommendations for how detailed the estimation of
stress concentration factors and wind/wave loads should be made; LogK; is modeled by a Nor-
mal distributed stochastic variable according to a specific SN-curve and follows the recommen-

dations in DnV-C203 (2010). ¢ = time (0 <t < T;) where T} indicates the service life. o, is the
standard deviation of turbulence at a given mean wind speed U. o, is modgled as Log-Normal
distributed with characteristic value o”'uj defined as the 90% quantile and standard deviation
equal to Jr 1.4 m/s. 6-“:' is modeled based on 61400-1(2005):

6,U)=I,-(075-U+b); b=56m/s (4)
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The cumulative (accumulated) probability of failure in the time interval [0, t] is obtained by
B, (e)=P(g(r)=<0) ®)
The probability of failure can be estimated by FORM/SORM techniques or simulation, see
Madsen et al. (1986), and Serensen (2011). For OWT components the maximum annual proba-
bility of failures between 10~ and 10™* considering that usually no people are in danger in case
of failure and the economic losses are limited, see also S@rensen (2012). The upper bound 10
corresponds to the reliability level often used for unmanned offshore structures for oil and gas.
The lower bound 107 corresponds approximately to the annual probability of failure implicitly
used for calibration of partial safety factors for onshore wind turbines. The reliability indices
(with reference period one year) corresponding to 107 and 10 are 3.1 and 3.7. It is noted that
the required reliability level also depends on the consequences for the structural system that fa-
tigue failure occurs in a structural detail.

3.2 Random fatigue limit model proposed by Lassen et al. (2005 ).

As an alternative model for the linear and bilinear SN-curves for welded fatigue critical details
normally specified in design codes, Lassen et al. (2005) proposed a non-linear model for esti-
mating the fatigue life, called the random fatigue limit model (RFLM). In this paper it is com-
pared with the above traditional S-N curves considering as basis an ‘F’-structural detail from
DNV-RP-C203 (2010). RFLM considers both the fatigue life and the fatigue limit as random
variables; see Lassen et al. (2005). The advantage of RFLM is that it takes into consideration the
variation in the fatigue critical stress range threshold and that run-out results can easily be in-
cluded. The model gives a nonlinear S-N curve in a log-log scale in the fatigue-limit area; the
fatigue life is gradually increasing and is approaching a horizontal line asymptotically instead of
the abrupt knee point of the bilinear curve,
The RFELM SN-curve proposed by Lassen et al. (2005) is written:

InN=8,-BIn(Ac-y)+e (6)
where fly, f1 are constants and y, £ model the threshold and random variations in fatigue life.
The deterministic parameters, £, £ and stochastic variables, y, & are shown in table 2 corre-

sponding to DNV-RP-C203, class ‘F’ SN-curve.
The limit state equation considering a RELM SN-curve is written:

8) :A_ZZ;N AC,

ik 2

v, JPy,) )

1
t-n,  -Plo
ﬂo,ﬂ,%“i’ ik },( g

4 EXAMPLE

A welded detail (hot spot) in an offshore wind turbine steel support structure is considered. The
OWT is assumed to have an expected life T, = 25 years and Tear = 75 years. Two different kind
of fatigue critical details (‘F” and ‘D’) are considered in combination with three different SN-
curves (in air, in sea water with cathodic protection and free corrosion according to DnV-C203
(2010)).The annual and accumulated reliability indices were calculated with first order reliabil-
ity method (FORM) and verified with Monte Carlo Simulation (MCS) using the stochastic
model proposed in the Table 2. The alternative fatigue-life model (RFLM) is compared with
traditional models based on a linear / bi-linear S-N curve approach, for this case the thickness
relationship is considered, see section 3.

5 RESULTS

Tables 3 to 6 show results of different analyses considering ‘D’ and ‘F’ fatigue critical details
based on DNV-RP-C203 (2010) and Lassen et al. (2005). The following cases are considered:
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Table 2. Stochastic model. D: Deterministic, N: Normal, LN: LogNormal.

Variable Distribution  Exp. value Standard deviation  Charac. value  Comments

A LN 1 0.30 1

Xscr LN 1 0.10 1 Stresses

Kw LN i 0.10 1 Wind/Wave loads
‘D’-STRUCTURAL DETAIL

m, D 3

logK, N 12.564 0.20 12.164 In air

logK, N 12.164 0.20 11.764 Cathodic protection

logK, N 12.087 0.20 11.687 Free corrosion

m; D 51

logK, N 16.006 0.20 15.606 In air

logK, N 16.006 0.20 15.606 Cathodic protection
‘F’-STRUCTURAL DETAIL

my D 3

logK, N 12.255 0.20 11.855 In air

logK, N 11.855 0.20 11.455 Cathodic protection

logK, N 11.778 0.20 11.378 Free corrosion

m; D 3

logK, N 15.491 0.20 15.091 In air

logK, N 15.491 0.20 15.091 Cathodic protection

logK, and logK; are assumed fully correlated
RANDOM FATIGUE LIMIT MODEL (RFLM) BY T. LASSEN (E-CLASS)

Variable Distribution ~ Exp. value Standard deviation =~ Comments

Bo D 22.48 Fatigue curve coefficient
Bi D 2.100 Fatigue curve coefficient
logy N 4.1 0.16 Fatigue Limit

2 N 0.0 0.14 Error term

e Case A: design equation with linear SN-curve (m=3) and limit state equation with
linear SN-curve (m=3)

e Case B: design equation with linear SN-curve (m=3) and limit state equation with
bilinear SN-curve;

e Case C: design equation with bilinear SN-curve and limit state equation with linear
SN-curve (m=3);

e Case D: design equation with bilinear SN-curve and limit state equation with bilinear
SN-curve;

e Case E: Design: Bi-linear SN-curve and limit state equation with RFLM model — with
and without thickness reduction.

Figures 1 and 2 show the annual and cumulative reliability indices respectively with Ty = 25
years and a Trar = 75 years with different combinations of the design equation and LSE for
structural details from DNV (‘F” and ‘D’) considering the SN-curves ‘in sea water with cathodic
protection’. The results include the reliability indices corresponding to the accumulated and an-
nual probability of failure at year 25 (=Ty). Further, also the design value ‘2" is shown normal-
ized with respect to the design value obtained using the case ‘D’ combination with cathodic pro-
tection for a class ‘F’. The results show that the endurance limit is quite important for reliability
assessment of fatigue critical details in wind turbine support structures. This is due to the large
number of cycles and that the stress ranges are distributed over a wide range. The endurance
limit and the slope of the SN-curve for small stress ranges are generally quite uncertain, and
more fatigue tests in this range (although costly) would be important for improving the reliabil-
ity assessment.

For case ‘D’ which corresponds to the usual design recommendations, the results show that
the annual reliability index exceeds the target level 3.1 during the whole lifetime, but the target
level 3.7 is reached after 12 years. For case ‘A’ the reliability level 3.7 is reached after 22 years,
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but it is also seen that the design parameter ‘z’ (e.g. the cross-sectional area) for case ‘A’ is
increased by 74% compared to case ‘D’ for a class ‘F’ detail. If a reliability level with a
minimum annual reliability index equal to 3.7 is required then it is necessary for a case ‘D’
design situation to increase the deterministic design fatigue life or to perform inspections during
the lifetime, see below.

In table 7, results are shown using the case ‘E’ corresponding to a class ‘F’ structural detail.
The results show that with the design parameter ‘z’ obtained using a bilinear SN-curve for
design that both the annual and the cumulative reliability indices are increased significantly
compared to case ‘D’. However, it is noted that the RFLM model does not include a thickness
reduction effect which could be expected to minimize the difference slightly.

In table 8, results are shown for case ‘D’ with cathodic protection SN-curves with a wide
range of fatigue design lives for Ty, = 25 years and class ‘F and D’ details. The corresponding
fatigue design factors (FDFs) are also shown and it is seen that in order to satisfy minimum an-
nual reliability indices larger than 3.1 and 3.7 FDF values equal to 2.5 and 4.9 have to be re-
quired. Alternatively, inspections have to be required. Table 8 also shows the design parameter
‘z’ value need to be increased. For offshore wind turbine substructures the required FDF values
and the possibility of performing inspections can be decided based on cost-benefit considera-
tions since typically only monetary consequences will result in case of failures. Further, site-
specific conditions can be accounted for.

=———CASE ‘A" =+ =CASE'B' =——CASE C' = = CASE D’ ++=ss+ CASE E {(WIe== CASE'E’

Figure 1: Annual reliability indices for structural details (‘D’ and ‘F’).

Figure 2: Cumulative reliability indices for structural details (‘D’ and “F?).
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Table 3. Annual and accumulated reliability indices

and design values for Case A (T = 25 years)

‘D’-DETAIL ‘F’-DETAIL
. Cathodic . . Cathodic :
In air . Free corrosion In air i Free corrosion
protection protection
B 3.13 3.13 343 3.13 313 3.13
AB 3.60 3.60 3.60 3.60 3.60 3.60
Z 1.01 1.37 1.45 1.28 1.74 1.85

Table 4. Annual and accumulated reliability indices

and design values for Case B (T = 25 years)

‘D’-DETAIL ‘F’-DETAIL
Inair  With cathodic protection Inair  With cathodic protection
B 4.21 531 421 571
AP 4.56 5.95 4.56 5.95
Z 1.01 1.37 1.28 1.74

Table 5. Annual and accumulated reliability indices

and design values for Case C (T = 25 years)

‘D’-DETAIL ‘F’-DETAIL
In air With cathodic protection In air With cathodic protection
B 1.96 0.72 1.96 0.72
Ap 2.72 2.10 272 2.10
z 0.77 0.78 0.98 1.00

Table 6. Annual and accumulated reliability indices

and design values for Case D (T = 25 years)

‘D’-DETAIL ‘F’-DETAIL
In air With cathodic protection Inair ~ With cathodic protection
B 2.81 2.61 2.81 2.61
AP 337 3.25 337 3.25
z 0.77 0.78 0.98 1.00

Table 7. Annual and accumulated reliability indices and design values
for the Case E (F-Detail and T, = 25 years)

without thickness relationship

with thickness relationship
B 4.40
AB 4.78
z 1.00

5.35
5.64
1.00

Table 8. Influence of ‘z’ parameter in the annual and cumulative reliability indices, Fatigue Design Fac-
tors (FDF) calculated for a wide range of fatigue design live (years) for ‘F and D” details with cathodic
protection SN-curve considering the case ‘D’ (T = 25 years).

Tear 25 40 60 75 100 120 140 160 180 200 250
B 1.39 192 237 261 293 313 331 345 358 370 3.9
A 246 276 307 325 350  3.66 380 392 403 413 435

z(F) 0.80 088 095 1.00  1.06 1.09 113 1.16 1.19 122 126

z(D) 0.63 070 076 078 083  0.87 089 092 093 095 1.00

FDF 1.00 1.60 240 3.00 400 4.80 560 640 720  8.00 10.0

173



]

A probabilistic model was formulated for fatigue failure in jacket type offshore wind turbine
substructures accounting for the operational characteristics of wind turbines and deterministic
design with specifications in IEC 61400. A comparative analysis between different SN-curves
shows a large effect on the reliability depending on the SN-curves used. Further, an alternative
non-linear SN-curve model, RFLM, was considered. The results with the RFLM model indi-
cates that higher reliabilities can be obtained compared to the traditional bilinear SN-curves. For
application within offshore wind turbine substructures more research are needed with respect to
calibration of fatigue design factors for inclusion in design standards. Also it is important to ac-
count for system effects in case of fatigue failure in different fatigue critical details in one
and/or many wind turbine support structures in a wind farm, Also the information from inspec-
tions and condition monitoring should be included. Furthermore, wake effects should be includ-
ed to account for wind farm effects.

6 CONCLUSIONS
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Maintenance optimization for offshore wind turbines using
POMDP

1.S. Nielsen & J.D. S¢rensen
Aalborg University, Denmark

ABSTRACT: In this work, a Partially Observable Markov Decision Process (POMDP) is used
for decision support for offshore wind turbines. The optimal decision policies for inspection and
repair are obtained for each time step dependent on the belief state for the damage state after
monitoring, and thus dynamic programming can be used. Seasonal weather variations are in-
cluded through their influence on weather constrains for inspections and repairs, as well as costs
to lost production, when corrective repair is not possible after failure. Application of the model
is illustrated through an example, where the main bearing is considered. Optimization is initially
performed for one component, and decision making for an entire wind farm is considered by us-
ing revised decision policies, when mobilization costs are already paid for another repair. The
total costs are calculated for an entire wind farm using simulation and by using the identified

decision policies.

1 INTRODUCTION

Maintenance decision making for offshore wind turbines is both an important and complex top-
ic. Important because maintenance costs are high and need to be reduced to make offshore wind
energy more competitive to other energy sources. Complex because decisions need to be made
taking into account entire wind farms, costs to inspections, preventive repairs, corrective repairs
and lost production, and weather constrains are present for maintenance actions. Furthermore,
large uncertainties are present for the deterioration processes and condition monitoring infor-
mation.

For many mechanical components, more failures can be observed than foreseen in the design,
because the actual behavior for e.g. bearings and gears is different compared to the design as-
sumptions. This leads to large costs for corrective and unplanned preventive maintenance. These
costs can potentially be reduced if decisions on inspections and prevenfive maintenance are
made with support from risk-based methods.

2 PRE-POSTERIOR DECISION PROBLEM

Maintenance planning for offshore wind turbines basically contains decisions regarding inspec-
tions and repairs. If the lifetime is divided into a discrete number of time steps and decisions re-
garding inspections and repairs are made at each time step, the associated simplified decision
tree is shown in Figure 1.
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Decision

Decision  nspection result Failure__ -
inspection LI
] No failure™
Failure __—
L e
no inspection e No failure —

Figure 1: Simple decision tree for inspection and repair planning. Should be repeated for each time step.
At the dashed vertical lines all branches continue as the showed one.

This decision problem contains two decisions at each time step, and earlier decisions influence
later decisions; therefore, the problem is a pre-posterior decision problem. For pre-posterior de-
cision problems, optimal decisions should be made such that the expected costs are minimized.
When a decision is made, it is necessary to take into account the optimal decisions for all future
decisions. The number of branches to evaluate in the decision tree increase exponentially with
the number of time steps, and in the unreduced form it becomes intractable. Various approxima-
tions can be applied to make it possible to solve the problem. In this paper, the decision process
is modeled as a Partially Observable Markov Decision Process (POMDP).

2.1 Markov decision problems

A Markov process has the property that the future is independent of the past given the present.
The simplest decision problem related to the Markov process is the discrete Markov Decision
Process (MPD). For this kind of problems, the state of nature is fully observed at each time step
and a decision is made based on the current state of the system. The effects of the actions related
to the decisions are uncertain, and costs are associated with the state of nature and decisions.
The optimal decision then only depends on the current state of nature. Therefore, an optimal
policy can be found for each possible state of nature by simply calculating the expected costs
during the lifetime for all possible policies, and choosing those with lowest costs. (Jensen &
Nielsen 2007)

Often, the deterioration state is not fully observed, but instead only observed through some
indicator. This is called a Partially Observable Markov Decision Process (POMDP). This means
that all past observations are relevant when the decision is made, and not only the present one.
However, the past observations can be summarized by using Bayes rule to calculate the proba-
bility distribution for the present state of nature (belief state) given the observations. Then, the
optimal policy can be found for a given belief state. (Jensen & Nielsen 2007)

For unbounded time horizons, the strategies are stationary. This means that the optimal policy
is the same for all the time steps. For bounded time horizons, the policies will be different at dif-
ferent time steps. Near the end of the lifetime, it will not be cost-effective to make expensive re-
pairs, even though it would be at the same probability belief state at earlier time steps. In this
paper, only bounded time horizons are considered.

The advantage of the Markov decision models is that only the current belief state is of im-
portance. This means that Dynamic Programming, introduced by Bellman in 1957 can be used
(Dasgupta et al. 2006). When only the current belief state is of importance, the optimal decision
can be found for all possible belief states for each time step, by starting from the last time steps,
and using the optimal decisions found there, when earlier time steps are evaluated. Then the
computational time is only linear with the number of time steps, and not exponential as for a
traditional decision tree.

In reality, for discrete state spaces, the belief state is a continuous valued vector with unity
magnitude. Therefore, there are infinitely many possible belief states. One way to solve this is to
discretize the belief vectors, and interpolate the costs from other belief states between these
states (Faddoul et al. 2011).

The classical POMDP has an uncertain inspection at the beginning of each time step, and the
decision is made on whether a repair should be made. Corotis et al. (2005) extended the ap-
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proach to include decisions on various types of inspection and maintenance methods for Risk-
based inspection and maintenance planning for bridge girders. Faddoul et al. (2011) further ex-
tended the procedure to use submodels for more advanced inspection sequences, for example
two inspections at each time step.

The general limitation with Markov models is the Markov assumption of independence be-
tween past and future given the present. Deterioration processes are generally not Markovian
when epistemic time-invariant uncertainties are dominant. However, if time independent varia-
bles are included in the model, the future deterioration state is independent of the past given
these time dependent variables (Straub 2009). Therefore, the policies can be found for each time
step based on current belief state for the deterioration state and current belief state for the time-
independent variable. This increases the number of calculations for each time step, but it is still
only linear with the number of time steps.

For the case presented in this paper, a simple three state model for the component health have
been applied, and therefore, time-invariant uncertainties are not included in the model. It can be
relevant to use such a simple model in cases, where only limited knowledge about the deteriora-
tion processes is available. This is the case for many wind turbine components, as the observed
behavior is different than the behavior expected from the theoretical models.

3 MODEL

The model presented in this section takes into account condition monitoring and inspections and
optimal decision policies are found for each time step for the decision on inspections and re-
pairs. The influence of the weather on accessibility has been included, such that it is uncertain if
inspections and repairs are possible in a given time step. In each time step, the following takes
place:

e Monitoring result is obtained

e Decision on inspection followed by inspection, if possible

e Decision on preventive repair followed by preventive repair, if possible

e Possible failure due to deterioration followed by corrective repair, if possible

The decision tree considered in the model is shown in Figure 2.

Rep. possible

Failure ____——
Decision i — AR
Inspection result Rep. P"Si"?_'?.(—;_” Not possible
e T i - -
Decision Ins. possible __—— b S s No failure ™
S e
inspection — TR ol
Monstormg DEPEUMN o ] Not possible
Not p055|ble | =

ne repair

no inspection

Figure 2: Decision tree. Should be repeated for each time step. At the dashed vertical lines all branches
continue as the showed ones.

In this model, the health of the component can take three states; healthy, damaged, and failed.
At each time step, there is a probability that the component advances to the following health
state, else it remains at the current health state. If a component has failed, it is known, and only
corrective repair is possible. Therefore, the belief state for the component health at the time of
the decisions can be described by one continuous number, the probability of being damaged,
P(dmg). The model can be extended to more damage states, and in that case the belief state for
the component health will be a vector.
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The component is assumed to be healthy at time step 1, and all repairs are perfect, and will
therefore bring the component to the healthy state.

The costs included in the model are cost of inspections, preventive repairs, corrective repairs,
and lost production. Lost production is incurred when failure happens, and in the following time
steps, if corrective repairs are not possible.

3.1 Weather constrains

For offshore operations, vessels have limitations with regard to wave height and wind speed
when a wind turbine needs to be accessed, and repair actions have to be made. If the duration of
the operation as well as the weather limits are known and long term time series from the loca-
tion are available, the probability of having an appropriate weather window in a given month of
the year can be found. This probability can be found for all months and for all types of opera-
tions. Generally, the longer the weather window and the stricter the weather requirements, the
larger is the probability that operations are not possible in a given time step. In the model it is
assumed that repairs have stricter requirements than inspections, and corrective repairs have
stricter requirements than preventive repairs. Therefore, at each time step, there should be corre-
lation between whether inspections are possible and whether repairs are possible, such that re-
pairs are not possible if inspections are not possible. However, if inspections are possible, re-
pairs can still be impossible. The probabilities included in the model are therefore:

e Probability of inspection being possible

e Probability of preventive repairs being possible given that inspections are possible

e Probability of corrective repairs being possible given than preventive repairs are possi-

ble

In the model, the year has been divided in seasons, and the probabilities of operations not being
possible are constant through each season. Initially these (conditional) probabilities have all

been set to 0.1.

3.2 Optimization procedure

The principle behind the optimization calculations is dynamic programming, as explained in
section 2.1. First, the state space for the component health is discretized into a finite number of
belief states. For all these belief states, the optimal decision policies are found sequentially for
each time step, starting at the last time step. At the final branches, at each time step, the ex-
pected costs for the remaining life time are needed in the calculations. These costs only depend
on the belief state, and can be found by interpolation between the values found at the following
time step. Further, each time step was divided in two, such that the interpolation was performed
after the monitoring branches and after corrective repair branches. This reduces the number of
branches to calculate at each time step by a factor three. At each time step, the probabilities and
expected costs for all branches are calculated. This includes using Bayes rule for updating of the
health state after monitoring and after inspections. The decision policies are found such that the

expected costs are minimized.

4 EXAMPLE

The purpose of this example is to test that the model works as intended. The model could be
used for various components, and in this example the main bearing is considered. The time step
length is chosen to one month, and the lifetime of the turbine is set to 20 years.

4.1 Deterioration model

The deterioration model has been set such that the mean time to failure is 40 years, and the time
in the damaged state is shorter than time in the healthy state. The transition probabilities are:
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09972 0 0
P(D,| D,.,)=|0.0028 0.9917 0 )
0 00083 1

where there is a column for each old damage state. The belief state for the damage state is up-
dated by multiplying this matrix by the old damage state, represented by a column vector:

P(D;)=P(D, |Df-1 YP(D,;) (1
The optimal policies have been found for belief states in 0.01 discretization.

4.2 Monitoring and inspection model

A condition monitoring system based on vibration measurements is assumed to be available,
and at each time step it is evaluated whether the measurements are low, medium, or high, or
whether failure has occurred. This gives four outcomes for the monitoring result. The condition-
al probabilities for these outcomes as set to:

06 01 0
03 03 0

P(MonilDE)= 01 0.6 0 @
0 0 1

It is then decided, whether an inspection should be made, and if made, the inspection results in
detection of damage or no detection of damage. This gives three outcomes for the inspection re-
sult, where the third one is failure:

09 02 0
P(ins, | D,)=|01 08 0 3)
0 0 1

Based on these probabilities, the probability for each inspection outcome can be found, and the
belief state for the damage given each observation can be found using Bayes rule.

4.3 Approximation for wind farm

The optimal policies are found using the POMDP for a single turbine. When decisions are made
for an entire wind farm, system effects can be considered. Here it is assumed that the mobiliza-
tion cost for the repair vessel is a significant contributor to the total cost of a preventive repair,
and if several repairs are made at the same time step, the mobilization costs only need to be paid
once. To include this, the optimal repair policy has been found during the optimization proce-
dure for the case, where the mobilization costs are zero at the current time step, due to another
repair paying them, but everything in the future is as in the normal case. These revised policies
are more cost-efficient than the policies found without taking system effects into account, but
the solution is still suboptimal.

4.4 Costs

The costs are in the example set to the following relative values:
« Inspection: 1
*  Preventive repair
*  Mobilization costs: 100
*  Unit repair cost: 100
= Corrective repair
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*  Lost production per month: 100
*  Repair costs: 500

For simplicity, discounting has not been included, but this could be implemented.

4.5 Policies

The primary outcomes of the decision analysis are the decision policies. In Figure 3, the optimal
decision policies are shown for inspections and preventive repairs. Furthermore, the revised pol-
icies in case of repairs of other turbines at the same time step are also shown. All decisions are
shown as function of time step and the probability of a damage being present, updated using the
monitoring outcome. For preventive repairs, the decision further depends on whether an inspec-
tion has been made, and the result of the inspection.

Generally, no inspections or preventive repairs should be made near the end of the life time.
The scatter (the white lines) for the inspection policies in Figure 3 is due to the expected costs
for the two decisions being very close. Therefore, it is almost indifferent whether inspections are

made.
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Figure 3: Policies for a wind turbine with (left) and without (right) mobilization costs. At a given time
step, if the probability of a damage being present is within the black areas, inspections/repairs should be
made.

4.6 Simulation for a wind farm

Simulations have been performed through the lifetime for a wind farm with 40 wind turbines. At
each time step, the belief state has been updated for each wind turbine, and the optimal decision
is chosen from the found decision policies. The revised decision policies with no mobilization
costs are used for the remaining turbines, if any of the turbines are already being preventively or

correctively repaired.
Figure 4 shows the main events of such a simulation. When repairs, but not repair decisions,

are marked, the revised decision policies are the reason for the repairs.
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Figure 4: Simulation for a wind farm with revised policies found using POMDP.

The total expected lifetime costs have been found using only the policies with mobilizations
costs included to approx 5300, and using also the revised policies to approx 5000. The costs are
shown in Figure 5 divided into categories, and the 95% confidence intervals for the mean of the
total costs are also shown. The total costs are 5% smaller when the revised policies are also
used. Here, the mobilization costs and failure costs are smaller, while the unit repair costs are
larger due to more preventive repairs.

Mobilization
ot Inspections
— 95% Confidence interval

Criginal

i 3 ; ; T i M Failure
Revised — - M Lost production
[ Unit repair

0 1000 2000 3000 4000 5000 6000

Figure 5: Comparison of costs for original policies and improved polices.

4.7 Simulation for a wind farm with harsh winter

For the simulations performed above, all conditional probabilities for repairs not beings possible
were 0.1 for all months. To evaluate the influence of a harsh winter, all the conditional probabil-
ities are set to 0.9 for the first and fourth quarter of the year. The decision policies for this case
is shown in Figure 6.

Here, the policies are periodic and depend on the month of year. Two months before the win-
ter starts, repairs should be made for smaller probabilities of damage than in the beginning of
the mild season. During the first part of the winter, even more repairs should be made, even
though it is rarely possible. The total costs are here approx 5400 and 5200, when the original
and revised policies respectively are used, which is more than the case with constant mild
weather.
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Figure 6: Policies for a wind turbine when the autumn and winter is harsh. In the black areas, inspec-
tions/repairs should be made.

5 CONCLUSIONS

A model based on POMDP was presented for decision support for inspections and repairs for
offshore wind turbine components. When the weather was constant during the year, the decision
policies were constant until the last few years of the lifetime, and in the case with seasonal
changes in weather, the policies were periodic. Approximate decision making for a wind farm
was performed by using revised decision policies for the remaining turbines, when other repairs
were already being performed. This gave a small reduction in the expected costs.
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ABSTRACT: Laminated composite sandwich panels have a layered structure, where individual
layers have randomly varying stiffness and strength properties. The presence of multiple failure
modes and load redistribution following partial failures are the reason for laminated composites
to exhibit system behavior from reliability point of view. The present paper discusses the specif-
ics of system reliability behavior of laminated composite sandwich panels, and solves an exam-
ple system reliability problem for a glass fiber-reinforced composite sandwich structure sub-
jected to in-plane compression.

1 INTRODUCTION

The word “composite” originates from Latin, and literally means “made up of distinct parts™.
This is indeed the most distinct feature of composite materials, which constitute of two different
material phases and as a result have a number of unique propertics. The combination of two ma-
terial phases (fibers and matrix), arranged in multiple layers, results in a material with non-
isotropic, non-homogeneous elastic strength properties, which can fail in a number of different
failure modes. To the reliability engineer, the presence of distinct failure modes means that
composites will exhibit system reliability behavior. This system behavior will appear on several
levels, corresponding to the length scales at which the respective failure modes occur — starting
from micro-scale (fibers, matrix and interface between them), through lamina (individual layers
with unidirectional fibers), structural components such as laminate panels (stacks of individual
laminas) and sandwich panels, and up to whole structures such as an entire wind turbine blade.

2 RELIABILITY-RELATED ASPECTS OF COMPOSITE MATERIALS

2.1 Length scales of composites

For the present paper the modeling domain is limited to three scale levels — individual lamina,
laminated panels, and sandwich panels. Taking into account individual unidirectional lamina al-
lows modeling the non-isotropic mechanical properties of composites, while avoiding the use of
micromechanics. Including laminates and sandwich panels into the analysis allows modeling the
reliability against failure of a given location within a structure — for example, a so-called “hot-
spot” which is known or expected to be critically decisive for the overall safety of the structure.

2.2 Definition of failure events

Due to the presence of a number of layers, the failure of a laminated composite panel will often
happen as a gradual event, with different layers failing in sequence. Between successive layer
failures the load previously carried by the failed lamina is redistributed to the layers remaining
intact. Consequently, the definition of an ultimate failure event for a composite sandwich panel
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can to a high extent be a matter of subjective judgement. Probably the simplest approach to de-
fining failure is identifying the so-called “first-ply failure” event, where failure of any of the
laminate components (ie. the first failure occurring under gradually increasing load) will be
considered as a total structural failure. Such an approach can however lead to very inefficient
designs, because typically the first failures are associated with matrix cracking, which does not
have a significant effect on the residual stiffness and strength of the structure (see Figure 1).
There is also some degree of redundancy in composite structures, meaning that the structure will
often be able to withstand loads higher than the load at which the first failure has occurred.

A progressive failure analysis procedure can be used to find the maximum load which the
structure can withstand while maintaining static equilibrium. This is the approach which most
fully describes the failure process in the panel, however it might not be very useful for design
purposes, because a large amount of irreversible damage can occur at load levels below the in-
dicated ultimate strength. Finally, the approach adopted in this paper is to use a progressive fail-
ure analysis procedure to find the load level at which the first fiber breaching occurs. The use of
progressive failure analysis means that the development of matrix-related failure events will be
followed until the first fiber failure occurs. Although not describing the ultimate failure, this ap-
proach might be more realistic for design purposes as the failure event is at the point when the
first significant damage occurs.

2.3 System characterization

As discussed in the preceding paragraph, progressive failure of composite laminates is charac-
terized by redistribution of loads following each of the successive failure events. Individual lam-
ina will have random strength, as well as random stiffness distributions, meaning that the se-
quence of layer failures might be different for different realizations of the stochastic quantities.
This is illustrated on Figure 1, where for two different realizations of the random lamina
strength properties the sequence of failure events is different.

Loading is not uniform either — a laminate can carry loads in a number of different directions,
including both forces and bending moments, meaning that there will be a varying stress field in-
side the laminate.
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Figure 1: Path-dependent progressive failure process of a
composite sandwich panel with random layer strengths

A system with the features as previously described (varying stiffness, strength, loading, and
load redistribution following failures) could in principal be modeled as a parallel system, as
long as the overall failure event occurred when the last system component has failed. However,
according to the definitions of laminate failure given above, ultimate failure occurs when the
maximum load bearing capacity of the structure has been exceeded, or significant damage has
occurred. These events might happen when there are still a large number of intact layers, with
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the failure event triggering a cascade failure of the remaining intact layers. This shows that a
composite laminate can only be characterized as a general system.

Daniels (1945) has described the properties and derived reliability bounds for a similar type
of system, consisting of equally loaded wires with random strength. The behavior of composite
panels bears similarities with a Daniel’s system, with failure being similarly characterized as the
situation when the load exceeds the remaining bearing capacity of the structure. A difference
with the classical Daniel’s system is the fact that the individual components in the presently dis-
cussed problem have different stiffnesses, and are possibly loaded differently.

2.4 Solution of the system reliability problem

While a number of approaches to solving system reliability analysis problems exist, the choice
of methods capable of resolving general systems is more limited. The solution methods which
the authors of this paper have reviewed can in principal be divided into four groups:

- Monte Carlo simulation methods, including crude Monte Carlo, and adaptive (search-
based) importance sampling (Melchers, 1990)

- Methods involving cut-set or tie-set definitions, e.g. Sequential Compounding (Kand &
Song, 2010), linear programming (Song & Der Kiureghian 2003), or direct multivariate
integration of the cut set / tie set when possible

- Using order statistic, transform each of the correlated component events into independent
events, and compute their joint probability distributions (Friis-Hansen 1994)

- Obtaining reliability bounds by evaluation of component failure sequences leading to a
point in the safe domain, thus evaluating the probability of the safe event set (Ditlevsen &
Madsen 1996)

Due to the presence of multiple layers and multiple failure modes per lamina (in the example
given below there are two moedes per lamina) for a typical composite panel the total number of
system components becomes fairly large. However, analyzing a large system in its entirety is
difficult using most of the methods listed. Given the above, three most suitable approaches to
solving the present reliability problem are identified:

- Use a technique not suffering from problem dimensionality (e.g., Monte Carlo);

- Simplify the problem by identifying possible critical components and focusing the analy-
sis on those components. Consider each of the critical components as a cut-set, i.c., is
failure results in an overall system failure;

- Use FORM/SORM analysis to find a possible design point, and correct the reliability es-
timate for any nonlinearity in the failure surface by applying importance sampling at the
design point. This analysis can serve as an indicator to the degree of system behaviour
present in the structure — under milder conditions this technique should be able to deter-
mine the correct probability of failure, while if there are significant system effects present
with multiple design points far from each other, the reliability estimate will not be cor-
rect.

2.4.1 Representing laminated faces as single equivalent layers

In sandwich panels, the thickness of the core is typically much larger than the face thickness.
This means that the variation of normal stresses in the faces will be relatively small, and under
certain conditions it can be disregarded, assuming that the normal stresses are constant through-
out the face (see Zenkert, 1995). Under this assumption, the sandwich model can be simplified
by replacing the layer-wise description of the face laminate with equivalent, homogeneous lay-
er, thus reducing the structural system to three components — upper face, lower face, and core. If
the strength distributions of faces and core are available, it is straightforward to determine the
system reliability by making a three-component series system analysis.

Although very useful in deterministic stiffness and strength analysis, it is possible that the
single-layer representation of the faces will result in some deviations in the reliability estimate,
because not all system effects and load redistribution effects under a progressive failure process
will be accounted for. Here, the extent to which a homogeneous-layer representation of the faces
can be used in reljability analysis is tested by comparing a reliability model based on homoge-
neous faces with the reliability estimates found from a full layer-wise model.
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3 EXAMPLE RELIABILITY ANALYSIS OF A COMPOSITE SANDWICH PANEL

In the following, the discussion continues with the help of an example reliability problem,
where the reliability against ultimate failure of a sandwich composite panel is considered.

3.1 Description of structure

The structure under consideration is a simply supported, unit-width sandwich beam with faces
made of glass-fiber reinforced fibers, and a balsa wood core. The two faces are identical lami-
nates, consisting of eight layers each. Individual layers have a thickness of 0.3mm, while the
core thickness is 40mm, giving a total laminate thickness of 44.8mm. The layup sequence of the
faces, @ =[—45"+45" 0" 0° 0" 0" 445" —45°], is simple, but in principle very similar to the la-
yup sequences typically found on wind turbine blades, where the vast majority of layers have
orientation of 0 and +45 degrees.

The sandwich beam is subject to a downward distributed load of @, = -7kN/m, and a com-
pressive axial force F, = -1400kN. This resembles a loading condition which can be typically
found on the downwind surfaces of wind turbine blades.

In the typical composite structures loads are varying randomly, and are usually associated
with a significant degree of uncertainty. This high uncertainty will be reflected in the reliability
analysis and will make it more difficult to observe the influence of material properties. As the
objectives of this study are related to material behavior, it is chosen that the load values will be
deterministic, thus eliminating them as a source of uncertainty.

The presence of defects also has a significant influence to the strength of composites. How-
ever, taking defects into account needs the introduction of an additional set of theories and mod-
els, which will greatly enlarge the scope and complexity of the analysis. Therefore the materials
used in the present study are considered defect-free. The influence of defects however remains
an important field of study which should be addressed in future research.

3.2 Modeling of stochastic material properties

In order to allow for random variations in the material properties within the laminate, each layer
should be represented by a separate set of stochastic variables describing the material properties.
The properties of a lamina are typically characterized by 9 material constants, and for the 17-
layer laminate this would mean at least 149 random variables (9 for each of the face layers, plus
5 for the core, where the transverse shear strength is the only strength property considered).
Elastic properties have less variation than the strength properties, and for structures where geo-
metric instabilities are not the dominant failure mechanism elastic properties have in general
less influence on the load bearing capacity of the structure compared to the strength properties.
Based on this argument, and in order to reduce the number of stochastic variables and to sim-
plify the problem, it is decided to represent the elastic properties of materials with their mean
values This results in a total of 81 stochastic variables representing the material properties.

Table 1 lists the assumed statistical distributions of the five strength parameters for composite
lamina used in the present study. The properties of the face materials are determined from mate-
rial test data given in the OptiDat public database (Nijssen 2006).

Table 1. Statistical distributions of strength parameters.

Parameter Designation Mean Cov Distribution
Fiber tensile strength Xe | 780MPa | 0.06 | Lognormal |
Fiber compressive strength X | 528MPa | 0.19 | Lognormal
Matrix tensile strength Ye | 54MPa [J__OS;w "_ _Lognormal
Matrix compressive strength Yo | 165MPa | 0.14 | Lognormal
Lamina shear strength S 82MPa 0.15 Lognormal
Balsa core shear strength S: 2.2MPa 0.1 Lognormal

The correlation structure of the material variables has to represent both the spatial variation of
a given mechanical property, as well as correlation between different properties (e.g., tensile
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strength and shear strength). Thus the correlation coefficient between any two stochastic vari-
ables is taken as the product of two correlation coefficients,

Py = Pri Py €))

where

- ijrefers to the variable number

- L(i), L(j) are the layer numbers which variables i and j refer to

- M(i),M(j) are the two material properties which the variables  and j refer to, respec-
tively.

- puy; is the correlation coefficient between the same property for different layers. It is
taken as a fixed value, with 0 < py;;; <1 fori#j, and py;p; = 1 fori = .

- paisg is the correlation coefficient between the different material properties which vari-
ables i and j represent, regardless of layer number. The values of py . are taken from a
study by Toft (2010), based on micromechanics laws, and are listed in Table 2.

It is considered that the core strength properties are not correlated with face properties, and
that properties in different faces are not correlated either.

The value of the correlation between the strength of different layers p;;;; is not known with
certainty, as it is in principle very difficult to determine. It is nevertheless expected that a sig-
nificant degree of correlation exists, because all material layers at a certain location within the
structure have been subjected to similar conditions during the casting and curing process. In or-
der to investigate the influence of inter-layer correlations, reliability analyses are carried out
with a number of different correlation levels, py;r; = [0; 0.3; 0.7; 1]. Correlation level of pyz; =1
will mean that all layers in a single face will have the same strength properties.

Table 2. Correlation coefficients between
material strength variables.

Xt Xc Yt Yc S
Xt 1 (08 |0 02 |02
Xc 08 |1 0 02 |02

vt |o |0 |1 o8 [08
ve |02 [02 (08 |1 |08 |
s |02 |02 [o8 [08 [1

3.3 Evaluation of ultimate capacity of the sandwich model

The stress distribution within the panel is calculated using the assumption that the core is loaded
primarily in shear, with negligible normal stresses, while the faces carry the normal stresses
with negligible transverse shear loading (see Zenkert, 1995). The layer-wise stress distribution
is calculated using Classical Lamination Theory, a method described in Jones, 1998. In order to
determine the failure load, a step-by-step analysis is performed, where at each step the layer
which will fail under the smallest load is identified. The mechanical properties of the failing
layer are downgraded, the structure is updated, and a new analysis step is performed on the re-
maining layers. The procedure is interrupted when a fiber-mode failure is observed, which will
typically happen after a number of matrix-mode failures have already occurred, which is also
visible on Figure 1.

The load at which a lamina fails is identified using the Hashin composite failure criterion
(Hashin, 1980). This failure criterion assumes that a lamina can fail in two distinct modes: fiber
failure or shear-dominated matrix failure. Both matrix and fiber failures can be tensile or com-
pressive, depending on the stresses acting on the lamina.

3.4 System reliability

The reliability of the structure described above is estimated using the three different approaches
suggested in section 2.4, as well as using a model where laminate faces are represented as single
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equivalent layers. A comparison of the performance of these four approaches is given in the fol-
lowing.

3.4.1 Crude Monte Carlo

Given that enough failure events are observed, crude Monte Carlo (MC) simulations are proba-
bly the most robust method for determining reliability, and are therefore used as a reference val-
ue here. All simulations used in the present study are run until at least 400 failure events have
been observed, which according to the formula by Shooman (1968) corresponds to a 95% con-
fidence that the error in the reliability estimate is less than 10%.

The results from the Monte Carlo simulations have identified that the layers in the face lami-
nate oriented at 0 degrees are the most critical for the integrity of the structure (in most of the
samples, indicating failure, the structure loses static equilibrium and collapses in a cascade of
failures, following failure of one of the aforementioned O-degree layers). In an attempt to sim-
plify the problem and make use of more efficient reliability methods, this observation can be
used as means to restrict the system analysis to the most critical parts of the structure,

The effects of correlation between properties of different lamina are also clearly visible from
the MC simulations. As Figures 2.a) and 2.b) illustrate, in the case of uncorrelated material
strengths in different lamina, the ultimate failure event is located at various layers, mostly the
four layers with O-degree orientation of the upper face. In the case of fully correlated layer
strengths within the face laminates, almost all fajlure events are concentrated at a single layer,
which is the highest-loaded layer with 0° fiber angle. Such a behavior is expected, as when all
the lamina in a given laminate have the same properties, the one failing first will simply be the
one subject to the highest stress.

30 30

20 20

10 10

Number of failure events
per 10,000 simulation samples

Number of failure events
per 10,000 simulation samples

5 10 15 5 10 15
Layer number Layer number

Figure 2: Location of layers where first fiber fracture is observed during a Monte Carlo simulation
a) No correlation between lamina propertics b) Full correlation between lamina properties

Results from Monte Carlo simulations, along with results from other used methods, are
shown on Figure 3.

3.4.2 Series system of critical components

The results from the Monte Carlo simulations showed that some of the layers (the ones with 0-
degree orientation) are the most critical to the integrity of the structure. If it is assumed that fail-
ure of any of these layers will lead to the ultimate collapse of the panel, each of the layers can
be considered as a cut-set consisting of a single component. The reliability of each of these sets
is equal to the component reliability, which, using singie-component FORM analysis, is found
t0 be Beomponen = [2.586, 2.574, 2.562, 2.550] for the four O-degree layers loaded in compression.
System failure probabilities can be then estimated by Pyyser = 1 — @il({Beamponens Reomponent), Where
@x() denotes the N-dimensional multivariate normal distribution, and A is the number of com-
ponents under consideration.
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3.4.3 Equivalent layer model

The stochastic distributions of the equivalent strengths of the laminate faces used in the present
problem are determined using simulation. For small failure probabilities, the tail of the strength
distributions will have the greatest importance, and in order to ensure a good estimate some tail
approximation technique has to be employed, as for example the ACER method by Naess
(2009). For the present problem the probabilities of failure are relatively large, and a simple fit
of a lognormal distribution to the data set from the MC simulation results gives excellent results
too. The total probability of failure is then calculated by assuming a series system of three com-
ponents (lower face, core, and upper face).

3.2/ ——Monte Carlo simulation 7
-&-FORM
3H -e-Importance sampling at FORM design point 1
-&-Series system of critical layers
. 2 g —v Equivalent single layer 1
3
£ 26f 1
2
T 24 -
o
& 22 J
2r i
180 | ]

0 0.2 0.4 06 0.8 1
Correlation between properties of different layers

Figure 3: Results from system reliability auy o

3.4.4 Comparison of results

System reliability estimates obtained by all the methods discussed above are shown on Figure 3.
The presence of system behavior is evident when looking at the performance of FORM method,
which fails to predict the correct reliability index, and converges to the same design point, re-
gardless of the degree of correlation between layers. This design point corresponds to failure of
the O-degree layer which is subjected to highest load (layer number 15, counting from the lami-
nate bottom surface). However, due to the randomness in material properties, failure modes cor-
responding to layers with lower stress are also present.

Importance sampling runs, centered at the design point obtained from FORM, converge to the
correct probability of failure in most of the cases considered; however the convergence is very
slow, because the sampling center points correspond to a single failure mode. Other failure
modes occur relatively rarely, because their probability densities are far apart from the sampling
center point. As a result, the importance sampling procedure described above has efficiency
similar to that of a crude MC simulation, because the importance sampling density maximizes
the chances of occurrence of just one of the several failure modes present.

The two simplified approaches for solving the system problem (using a smaller part of the
system, or representing the faces as homogeneous) both capture the main trends in the system
behavior, however the reliability estimates are conservative, sometimes with significant differ-
ence from the reference MC simulation results. These differences are explained by the facts that
with such simplified representations the redistribution of stresses between the two sandwich
faces following matrix-mode failures cannot be captured. The accuracy of the homogeneous
layer representation is further limited by the underlying assumption that the stresses are constant
throughout the laminate face.
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4 DISCUSSION AND CONCLUSIONS

The problem of estimating the reliability against ultimate failure of composite sandwich panels
has been discussed. Based on the properties of composite panels, including random strength and
stiffness of layers, load redistribution under successive failures, and ultimate failure load de-
pendent on the sequence of prior failures, it is suggested that the composite structure is best rep-
resented by a general reliability system.

Reliability of the general system has been calculated using the Monte Carlo approach. It is
noted that the O-degree layers (where fibers are oriented along the load direction) are critical for
the integrity of the structure, and failure of these layers often leads to overall system failure.
Based on such observations, it is possible to implement reliability methods more efficient than
crude simulation, by considering only the parts of the system corresponding to the most critical
layers identified. In this way a crude approximate estimate of the system reliability can be ob-
tained, with some inaccuracy caused by the lack of account for the load redistributions follow-
ing failure events.

Another way for simplifying a composite sandwich model is the commonly used approach of
representing the laminated faces as equivalent homogeneous layer. Using this approach allows
to capture some of the characteristics of the reliability problem, however it does not account for
load redistributions following partial layer failures, and it does not account for the (small) varia-
tion of stresses throughout the face thickness. As a result, representing the laminated faces as
equivalent homogeneous layers results in a reliability estimate differing from the reference
Monte Carlo calculation. Although being relatively inaccurate, the single homogencous layer
calculation yields an approximate, conservative estimation of the system reliability, and can be
useful in some reliability calculations where model complexity will not allow the use of full
layerwise representation of the sandwich faces.
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ABSTRACT: We propose a probabilistic methodology to assess the reliability of a network of
bridges in the aftermath of an earthquake, allowing real-time updating when data collected by
visual inspection or instrumented monitoring are available. The approach makes use of a Baye-
sian network with conditional Gaussian distributions to model the correlations in demands and
capacities of the bridges. The main benefit of the approach relative to using a Bayesian network
with discrete variables is that it can handle a large number of variables (in the order of a few
thousand), performing exact inference. In this work, we propose a formulation to model the
prior assumptions on seismic excitation and on capacity and damage state by linear relationships
and conditional Gaussian distributions. We present the effectiveness of the methodology on a
large bridge network, showing how the reliability of links and of the connectivity between se-
lected locations is progressively updated as information on ground acceleration at recording
sites and on observed displacement and condition state of selected bridges becomes available.

1 INTRODUCTION

In the aftermath of a major seismic event, decisions about the use and management of transpor-
tation networks are crucial to mitigate the losses induced by the earthquake. Post-event deci-
sions include the dispatching of rescue teams, the scheduling of inspections, and selection of the
operative level for each facility. In this process, managers must maintain an adequate level of
safety without excessive reduction in the operation level of the network.

Knowledge about the condition state of a facility is gained from modeling the seismic intensi-
ty and structural vulnerability, and from observations collected in the field through visual in-
spections and sensor recordings of the ground motion and of the structural response.

The Bayesian probabilistic theory offers an ideal framework to process these data, taking into
account the prior available information. Bayesian methods allow progressive updating of the
probabilistic distributions describing structural condition and network performance as more and
more information becomes available.

In the reliability assessment of a road network, observations collected on one bridge influence
our knowledge about the conditions of other bridges. As the bridges are exposed to the same
seismic event, we expect the excitations they experience to be correlated. Furthermore, one may
expect that capacities of bridges with similar typologies to be positively correlated because of
underlying common factors. Consequently, damage levels experienced by different bridges are
expected to be positively correlated, and observing a severe damage on one bridge would sug-
gest other bridges to be similarly damaged.

Bensi ef al. (2010a) make use of a Bayesian Network (BN} to model the dependency among
seismic demands, structure capacities and damage states. The BN is a graphical model of a set
of random variables, related by conditional probability distributions. It is a statistical tool widely
used in many fields of engineering, including civil engineering. The unfamiliar reader is referred
to the book by Jensen & Nielsen (2007) for a general introduction. While the problem of seismic
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vulnerability is properly defined by continuous variables, in the above-mentioned work by Bensi
et al. the BN model was approximated using discrete variables in order to allow use of extract
inference algorithms. Aside from the approximation involved, the drawback of discretization is
that, when the number of components in the system is large, the size of the grid required in the
BN to accurately describe the dependency among variables is computationally unbearable. To
reduce the dimension of that grid, the work of Bensi ef al. (2012b) proposes a method to ap-
proximate the dependency among the variables with a small number of auxiliary variables.

In this paper, we follow another path and make use of Gaussian BNs (GBNs) to address the
same problem. GBNs are a special case of BNs, in which each random variable is defined by a
Gaussian marginal or conditional distribution and variables are linearly related to their parents.
Cowell et al. (1999) and Murphy (2002) provide detailed descriptions of GBNs. An application of
GBNs to seismic reliability assessment is presented in Yue ef al. (2010). We formalize the prob-
lem of seismic vulnerability using log-normally distributed random variables, related through
power and product rules, so that by taking the logarithmic transformation we can map the prob-
lem into the normal space with linear relations. Using GBNSs allows us to exactly include models
available in the literature, notably ground motion prediction equations.

2 INFERENCE IN BAYESIAN NETWORKS WITH GAUSSIAN VARIABLES

2.1 Updating in the canonical form

In GBN, the joint probability of all variables is Gaussian, and each marginal or conditional is
Gaussian as well. In this paper we formulate the GBN framework to directly include vectors of
random variables. We arrange the quantities describing all components of the network in a single
vector, so that the vector refers to the entire network. If vector y is a root in the BN graph, we re-
quire the joint distribution of y to be Gaussian. If it is a child, we require that its conditional dis-
tribution be of the form
p(ylx) = N(y, Tyxx + ¢y, zsy) (1)
where N(-, i, ) is the multivariate Gaussian distribution with mean vector p and covariance
matrix Z, vector X lists all the parents of y, matrix Ty and vector ¢y, define the linear relation
between the parents and the conditional expectation of variables y, while g, can be seen as the
covariance matrix of a zero-mean noise term added to the linear combination of x.
Suppose the distribution of vector x is jointly Gaussian, and we wish to update its distribu-

tion upon observing, with imperfect accuracy, the value of one of its components. It is conve-
nient to express the normal distribution in its canonical form, which we refer to as N':

p(x) =N'(x,n,A) & exp [—%xTAx +x™+ a(n,A)] 2)

where a(n, A) is a normalizing term. Precision matrix A and vector 1) are related to the cova-
riance matrix and mean vector by the following relations:

A=Z" n=Ap @

Suppose we observe the value of the i-th component in vector X, assuming the value of y. Tak-
ing uncertainty into account, suppose the observation is defined by a Gaussian likelihood with

mean value y and variance crfy:
pO/Ix) = N(y, %, 04) = N(xy,,03) )

Observing a single component in vector X is equivalent to observing all components, if we as-
sign infinite variance (i.e. zero precision) to the observation of all other entries. Therefore, the
likelihood function can be written in the canonical form, on domain x, as:

p(y[x) = N'(X, My, Apsr) (5)

where every element of precision matrix A,y is zero, except the i-th entry on the diagonal,
which is equal to O'E‘yz. Vector 1, is also zero, except for the i-th entry, which according to Eq.
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3 is equal to ag_yzy. Bayes formula requires multiplying the prior distribution and the likelihood
function to obtain the posterior distribution of . In the canonical form, the updating reads:

Ay=Ap+A;p My =Ny + My (©)

where subscript zrefers to the prior distribution and U to the posterior, updated one.

2.2 The junction tree

To perform inference on all variables, we use the junction tree algorithm (Murphy, 2002). The
vectors of variables are arranged in cliques and separators, and potentials associated with them.
The potentials are the marginal (for the roots) and conditional (for the children) distributions that
define the original GBN, and they are distributed among the cliques. Marginal distributions are
functions defined only on one vector variable, and they can be easily assigned to cliques. To as-
sign conditional distributions, we need to define the expression in Eq.1 as a function on the joint
domain of parent and child variables, z = [x7 yT]T. In canonical form, this function is:

f(z) = N’(Z, BzTAeyCy' BzTAzsz) (7

where Ay, = Iz} and B, = [~Tyx I, in which I denotes the identity matrix. Once the junc-
tion tree is initialized, we use the Hugin algorithm to find marginal distributions along all cli-
ques and separators (Murphy, 2002). For processing each observation, we define the corres-
ponding likelihood function, as in Eq. 5, then we update the distribution of the observed vector
in a clique containing that vector and then propagate the information along the whole tree.

3 GBN FOR SEISMIC DEMAND AND NETWORK RESPONSE
3.1 Demand model

‘We model the demand for seismic event at site i by the classical form
log[aij (D] = 103[5ij (T)] + o8 + Ty (8)
where a;;(T) is the spectral acceleration at period T, @;; is the median prediction, and &;; and 7
are respectively the intra-event and inter-event residual terms. ;; and 7; are standard normal
random variables, and coefficients ;; and 7; define the standard deviations of the residuals.
The dependency in the seismic demand for the bridge sites is captured by the structure of the
intra-event residual. Loth and Baker (2012) have recently proposed a model for the correlation

between intra-event residuals, which takes into account not only the site locations but also the
selected natural periods. They model the correlation matrix as:

E(h) = Byexp (sam) + Byexp (o) + Bsln(h =0) (9)

where 4 is the distance between two sites, In(.) is the indicator function, and matrices
B;,B;, B; are calibrated for a grid of 9 by 9 periods ranging from 0.01sec to 10sec, as reported
in Loth and Baker (2012).

The period T of a structure may not be known, and its value affects both the median predic-
tion of the spectral acceleration and the correlation of the residuals. We note that the correlation
is not significantly affected by small variations in the period, while the median prediction may
be significantly affected. We assign a nominal period Ty to each bridge, and assume the correla-
tion of the residuals is that computed for nominal periods. We adopt the approximate rule:

a(T) = a(Ty) - (Tlo)ﬁ (10)

where f is a coefficient to be fitted to the seismic demand model. For the sake of notational
simplicity, subscripts ij have not been used in the above formulas, but they apply in each case
indicating the seismic event and location of the bridge.
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3.2 Response model at structure level

We idealize the bridge as a single-degree-of-freedom (SDOF) system, using the classical New-
mark-Hall approach as reported, for example, in Chopra (1995). The clastic natural period of the
structure is T = 21,/s,m/F,, where m is the mass, s, is the relative displacement at yield and
F, is the yield force. The acceleration that leads to yielding of the structure is a,, = F,/m, while
the yield-strength reduction factor is Ry, = a(T)/a,. Under logarithmic transformation, all pre-
vious relations are linear and preserve normality. The relation between the ductility demand, pg4,
and R, depends on the period. For long periods, the “equal displacement” assumption holds,
while the “equal energy” assumption is more appropriate for short periods:
R, Ry<lorR,>1land T=T,

”‘I_R—f’; Ry>1 and T <T, ()
where the period T,, marking the transition between the two hypotheses, is a property of the
spectrum. In the present study we set T, = 0.5sec for simplicity. The “equal displacement™ hypo-
thesis defines a linear relation between Ry, and py. Unfortunately, the “equal energy” does not,
and we have to linearize it before embedding it into GBN. We fit it with relation

pg =lkq R} - e (12)

where parameters ky and A are calibrated as 1.3 and 0.25 respectively, and the standard devia-
tion of the zero-mean, normally distributed error term gz is 0.24, as reported in Figure 1. The
demand in terms of relative displacement is obtained as § = i - sy,

The performance of the structure under the earthquake load is described in terms of the ratio
between the demand in ductility and the ultimate ductility i, v = p,, /4. If ¥ is less than unity
(i.e. its logarithm is negative), the structure fails.

3.3 Network model

Variables sy, F,, m, 4, and consequently T, ay, a(T), Ry s, ig, and r are repeated for each
bridge, and the instances of each type of variable is listed into a corresponding vector. Figure
2(a) reports the scheme of the GBN, after marginalization of some variables. Vectors Fy, a9, 1, 8
and r define the shear capacities, spectral accelerations, relative displacements and damage ra-
tions, respectively. The prior joint distribution of vector a, follows the model presented in Sec-
tion 3.1. In the definition of the other distributions, we can accommodate arbitrary correlation
structures. To model the epistemological correlation among the capacities of the bridges, we in-
troduce a vector 8 of parameters. Each component of this vector refers to a specific structural
typology, and we mode] the capacity of the i-th bridge, belonging to k-th typology, as

By, = Fy; + gtk gFF (13)

=0.24

k=18, A'=0.25, swdl[e

d

Figure 1: Yield-strength reduction factor vs ductility demand: “equal energy assumption” (continuous
line) and linear approximation in the logarithm space (dashed line for mean prediction, dotes lines add
and subtract standard deviation).
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Figure 2: (a) GBN model; (b) corresponding junction tree

where Fy, is the nominal median capacity, obtained by a structural analysis of the component,
0, is the parameter depending on the structural typology, and &g, is a local error term depending

on the individual structure. According to this model, capacities of structures belonging to the
same typology are correlated, but those of structures belonging to different typologies are not.

The ductility demand depends on the shear capacity and spectral acceleration, the displace-
ment depends on the shear capacity and ductility demand, and the damage depends on the duc-
tility demand, after marginalization of the ductility capacity. The GBN is reported in Figure
2(a). Node M represents the magnitude and epicenter location, which together define the spec-
tral acceleration. We suppose that, shortly after the seismic event, these data are estimated with
sufficient precision to be considered as deterministic quantities. In the United States, for exam-
ple, the Geological Survey provides this information with high precision a few minutes after the
event. Node F refers to the state of the network, and it will be illustrated in section 3.4. The
junction tree for the core of the GBN is reported in Figure 2(b). In this scheme, the largest cli-
que has the cumulative size of three vectors (Fy, a,, p), each with size equal to the number of
components. Therefore, the largest matrix to be stored is a square symmetric matrix of size
equal to 3 times the number of components. In the Hugin algorithm, the most expensive opera-
tion is to compute the marginal on each separator. When the joint distributions are represented
in the canonical form, marginalization requires inverting part of the precision matrix (Murphy,
2002). This is the main computational task in the proposed formulation. Obviously, this task
could be expensive in high dimensions.

3.4 Network reliability

The performance of the road system, which is indicated by node F in the scheme reported in
Figure 2, is related to the state of the components, which is described by random vector r, joint-
ly log-normally distributed at any stage of the updating procedure.

Possible reliability values of interest include the marginal probability of damage or failure of
any individual component and the failure probability of any set of components arranged into a
series or parallel system. For example, the failure probability of any link in the road system can
be assessed by including the corresponding components in the set. The reliability assessment for
any set of components requires computing the multivariate cumulative normal distribution,
which can be done by efficient numerical methods, such as that in Ambartzumian ef al. (1998).

3.5 Observations

Observation on any variable included in the GBN, i.e. any component or linear combination of
components of the constituting vectors, can be processed. The observation can be “hard” when
the variable is perfectly observed, or “soft™ if it is observed with a Gaussian likelihood function.
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However, note that the reliability node F does not fulfill the condition of GBN and, hence, we
cannot accept observations collected on it. Suppose, for example, that we observe that the i-th
bridge in the network has collapsed. This can be translated into a stepwise likelihood with value
zero when Inr; is negative, and one when it is positive. As this likelihood function on vector r is
not Gaussian, the posterior distribution is not Gaussian as well. We are currently investigating
the use of a Gaussian approximation of the posterior by alternative best-fitting criteria. In the
present work we restrict our attention to the observation of the GBNs variables. It is noted that
once the state of a bridge is observed (for example, a bridge has collapsed), it is easy to fix the
state of that bridge to the observed value in the GBN model. What the present model cannot do
is propagate consistently the effect of this information onto the state of the other bridges.

4 NUMERICAL EXAMPLE

The method is applied to the reliability assessment of the road network shown in Figure 3(a). It
is a network connecting 10 nodes using 17 links, on which 35 components (bridges) are located.
The network is spread over a 40kmx40km region, and we assume a seismic event of magnitude
7.5 occurs with the epicenter in the position marked with a cross near the upper right corner.
The seismic excitation is modeled with the law calibrated by Akkar and Bommer (2010). Four
bridge typologies, from T} to T4, are present in the network, as reported in Figure 3(b).

The median spectral acceleration, at the natural period of each bridge, and the shear capacity
for each bridge are reported in Figures 4(a) and (b), re :Pectively The acceleration ranges from
5.6ms > about Skm from the epicenter, down to 0.61ms * about 40km from the epicenter. Figure
5(a) reports the corresponding failure probability for each link in the network, while Figure 6(a)
reports the probability of connectivity for each pair of nodes in the network. We introduce 3 ob-
servations: The spectral acceleration at the nominal period at bridge #3 is observed to be 6. Oms™
with a coefficient of variation (c.0.v.) of 20%; the relative displacement of bridge #9 is observed
to be 12cm with 20% c.0.v.; the performance r, of bridge #2 is observed to be 2 with 10% c.o.v.
The first observation is obtained from a ground motion recording, the second from recording of
a sensor installed on bridge #9, the third from observation of light damage of bridge #2. Each
observation affects the reliability of the bridge where the observation is collected as well as that
of other bridges because of the correlation among demands and capacities. Figures 5(b) and 6(b)
report the updated results after processing the three pieces of information, showing how the re-
liability of each link and the connectivity of each pair of nodes deteriorate.

a) N:node, B: bridge, L link b)
T8, 1 1220%
0 0 1 :
TZ: 8, :1:20%
® A
5, 5 0,1 1%20%
3 5 B10 B1 Bl T6,01520%
B2 B
i . = B3 B12 .
-10 - 10 - 4
BS gg Bs B7
B13 ® B21
-15 - -15 _Bi4 . B20
E E B3t B17
) = . B8 °
-20 - -20 B15 516 B25 B22
° B26
828
25 25 g3z & .
L)
B27
B29 B23
-30 -30 B30
B3 Ba  BX = B
-36 - -35 -
10 15 20 25 30 a5 40 45 513 10 15 20 25 30 35 40 45 50
[Km] [Km]

Figure 3: (a) Example of road network, (b) Structural typology of the bridges, from T to Ty.
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Figure 4: (a) Median Spectral Acceleration (PSA) for each bridge; (b) Capacity for each bridge.
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Figure 5: (a) Prior failure probability of each link; (b) Posterior failure probability of each link.
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5 CONCLUSIONS

We have presented an updating methodology based on the Gaussian Bayesian network to assess
the reliability of a road network when observations on spectral acceleration, relative displace-
ment and damage are collected. The technique allows fast computation and it can be used for
the simulation of large road network, properly modeling the correlation among demands and ca-
pacities of the structures. Because of the fast numerical scheme, it can also be used for simulat-
ing many alternative seismic scenarios, with different magnitudes and epicenter locations. The
Gaussian framework also allows a fast computation of the posterior uncertainty when observa-
tions are made, allowing a direct assessment of the relevance of one piece of information to the
updating of the distribution of other variables.

The GBN is suitable for embedding models alternative to the Newmark-Hall approach, how-
ever only linear relations among the variables are acceptable for exact inference. The vector no-
tation allows a simple scheme and a fast formulation of the probabilistic network.
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ABSTRACT: The present paper proposes to apply the framework for risk assessment of sys-
tems developed by the Joint Committee on Structural Safety (JCSS) to the probabilistic model-
ing and risk assessment of networked systems. The proposed framework which rests on the
Bayesian probability theory accounts for both uncertain and given hazard events. Consequences
of damages to the systems are differentiated into loss of functionality and replacement/repair
costs. The uncertainty associated with the internal capacity of the systems with respect to redi-
stribution of the internal demand is modeled probabilistically. The probabilistic analysis of
damage scenarios and cascading system failure is facilitated by Monte Carlo simulations. The
risk framework facilitates the assessment of both the vulnerability and the robustness of the
modeled systems and thereby enhances the understanding of the system performance and risk
management. The suggested framework and methodical approach is illustrated on an example
considering a fictitious electrical power grid.

1 INTRODUCTION

At some level, most if not all engineered facilities may be characterized as networked systems,
e.g. traffic infrastructure, offshore and onshore oil and gas distribution systems and electricity
grids. Such systems are gaining increasing importance in society not least due to their growing
significance for societal functionality. Constituents of such networked systems are typically
geographically distributed but interconnected. Failure of one or more constituents may cause the
Failure of other constituents due to changes in internal flow demands, the event of which is re-
ferred to as cascading failure. However, surviving constituents may also lose their functionality
due to loss of connection with the rest of the system.

Networked systems as a category is rather broad and in principle covers social networks, bio-
logical networks, infrastructure systems, etc. also referred to in the literature as complex net-
works. Significant theoretical and methodical achievements have been reached concerning the
modeling and assessment of complex networks. Graph modeling of real-world networks is con-
sidered in e.g. Erdos & Rényi (1959), Watts & Strogatz (1998), and Barabasi & Albert (1999),
the description of the internal flow distribution is considered in e.g. Motter & Lai (2002) and
Duefias-Osorio & Vemuru (2009) and the assessment of the hazards to which such networks
may be exposed is treated in e.g. Mackie et al. (2011) and Poljansek et al. (2012).

Probabilistic modeling and risk assessment of civil engineering systems is treated in Qin
(2012) and there it is identified that for networked systems, integral approaches are still to be
formulated which not only considers the uncertainties with respect to the resistances of the con-
stituents to hazards acting from the outside of the systems but also with respect to the resis-
tances of the constituents for what concerns the internal demand redistribution. Such uncertain-
ties may affect the performance of the systems with respect to cascading failures and associated
loss of functionality of the systems and should therefore be included in the risk modeling to-
gether with their associated consequences.
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The aim of the present paper is to establish a framework for the probabilistic modeling of
networked systems, which considers the uncertainties concerning the characteristics of the ha-
zards and the resistance of the constituents to hazards as well as with respect to internal flow
demands. To facilitate this, the approach taken here is to integrate the probabilistic system risk
assessment framework proposed by JCSS (2001) into the existing performance models for com-
plex networks. Having established this framework, a methodology is then formulated to facili-
tate the probabilistic analysis which is required for the system risk assessment. Finally, the pro-
posed framework is illustrated on an example considering the risk assessment of a fictitious
electrical power grid under different damage scenarios and studying the sensitivity of the risk
for this system with respect to different modeling assumptions.

2 RISK MODELING OF NETWORKED SYSTEMS

The risk modeling of networked systems takes basis in the graph theory. For networked sys-
tems, the individual nodes and the connections can be treated as vertices (nodes) and edges re-
spectively. Using graph models only, however, is not sufficient for the risk assessment of net-
worked systems. To realize the assessment, it is necessary to establish a risk modeling
accounting for the scenarios of events from the hazards to the end of cascading failures. Accord-
ing to the definition of risk by Faber (2009), risk of engineered systems is understood as the ex-
pected consequences associated with all the potential hazards. That is, the risk involves both the
probabilities of the occurrence of all the potential hazards and the corresponding consequences.
Let us assume that there are totally N nodes in an intact system. In Table 1, the categories of
condition states and corresponding consequences of the nodes are summarized. To estimate the
consequences accurately and to be able to represent the functionality of networked systems ap-
propriately, the condition states of the i" node are classified into three categories, 1) failure, 2)
survival without functionality and 3) survival with functionality. The failure of the node might
occur directly due to hazards (DF)) or in the subsequent cascading event (CF;). As explained be-
fore, if the node survives it might still function but can also lose its functionality due to loss of
interconnection, These events are denoted availability (A;) and unavailability (U)), respectively.
Consequences of the node are classified as either reconstruction cost C* (direct consequences)
or as utility losses C" (indirect consequences). The reconstruction cost are due to the cost to re-
build the individual nodes and the utility losses are associated with the inconvenience to the us-
ers, fatalities, etc., in principle all the other potential losses different from the reconstruction
costs. The consequences that correspond to the three different condition states are C*+C7, C7,
and 0 respectively.

)

Table 1. Categories of condition states and corresponding consequences of the nodes (i=1,2,...

Consequences

Cause of damages Condition states

-

I: Initial phase Hazards DF, cr ey
R u
Initial damages g G +G
II: Cascading phase (given that the node does not fail A, 0
in the initial phase) U cv

In the probabilistic modeling of systems, it is of great importance to represent all relevant un-
certainties in full consistency with available information (Faber (2009)). For the networked sys-
tems subject to different hazards, the uncertainties exist in:

(1) Estimation of the demands from various natural hazards NH, (=1,2,....N) (=1.2,....H),
such as snow, earthquake and lightening. H is total number of indicators of demands from natu-
ral hazards. NH, is the demand on the i" node from the /™ indicator. In the present paper, for
illustrational purposes the demands on the individual nodes from different natural hazards NH,

are assumed to be independent. The sub-subscript in the term represents the spatial dependency
of the natural hazards.

(2) The extent of

the imposed damages represented by the indicator vector
A ((S-LA 5 _vé‘m)r
1PN

. 8™ (i=1,2,...,N) indicate whether the ' " node is damaged or not. In the
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following, it is set equal to either 1 and 0 depending on whether the node is the target or not. If
it is equal to 1, it is assumed that the /" node fails instantaneously.

(3) The resistances of the nodes with respect to natural hazards, R (i=1,2,....N)
(=1,2,....,H). R™ represents the resistance of the i node to the /® natural hazard, which here
are assumed to be mutually independent for the same node. It is also reasonable to assume that
R™ is independent of NH .

(4) The resistances of the nodes to internal demand changes, R (i=1,2,...,N). R represents
the resistance of the " node to the internal change caused by damages of one or more nodes.

A model that describes the internal demands and resistances of nodes of complex networks is
presented by Motter & Lai (2002). There the internal demand of a node is defined as the total
number of shortest paths passing through the node. The capacity of a node is defined as the
maximum demand the node can resist. It is further assumed by Motter & Lai (2002) that the re-
sistance of a node can be described as a linear function of its initial internal demand.

CF =Q+a)Lk, 6))

where G represents the original graph model of the networked system. C" is the capacity of
the i (i=1,2,...,N) node, and Lf‘Fx represents the internal demand on the node in the graph model
X (Lj, is the initial internal demand on the i" node in the original graph model G ). « is called
as tolerance parameter.

As introduced in Section 1, the described model undertakes the analysis of the scenarios of
cascading failures deterministically. However, the uncertainties associated with the resistances
as well as internal flow demands must be taken into account in the risk assessment of engi-
neered structures. A probabilistic framework to establish standardized probabilistic models for
the representation of uncertainties associated with the resistances of structures is proposed by
JCSS (2001). This framework can facilitate an improvement of the model of the performance of
complex networks by Motter & Lai (2002). To this end, the resistances of all the nodes C
(i=1,2,...,N) in the system introduced by Motter & Lai (2002) can be regarded as design resis-
tances. These are different from the actual resistances which in the subsequent are represented
by R¥ (i=1,2,...,N) to avoid confusion. The resistance of a node to the internal demand is mod-
eled by a random variable. The expected value of the resistance is defined as:

E(RF)=CF =(+a)Lj; (2)

The parameters presented above are adopted to formulate the risk modeling of networked sys-
tems. The probability distribution function and the characteristics of the parameters can be de-
termined according to the applied design practice and available data. The detailed probabilistic
analysis of the condition states of the nodes in the networked systems will be introduced in the
subsequent (Section 3).

3 PROBABILISTIC ANALYSIS OF NETWORKED SYSTEMS

The probabilistic analysis of networked systems concerns the probabilistic assessment of the
different scenarios of the system under all the potential hazards. As indicated in the foregoing,
the probabilistic analysis can be divided into a probabilistic analysis of the nodes (constituent
level) and a probabilistic analysis of the whole system (system level). Different from the proba-
bilistic analysis of individual engineered structures, individual constituents of such systems
(nodes) are associated with their own consequences (utilities and reconstruction costs), and
therefore, the probabilistic analysis of the nodes is necessary for the estimation of the total risk
of the whole system.

The fﬂailurc of the ™ node due to a hazard event can be described by
DFE, :i 4 R ~-NH, <02 . Based on the independencies among variables as introduced in
the last section, the probability P(DFE) is:

P(DF.)=P[0(RF“J ~NH, <0)]= I8 XL () o, (3, ity i, )
o U»* s
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where f, (e) is the probability density function of the random variable Z (if the variable Z is
replaced by vector Z, f, () becomes the joint probability density function of the components
of the vector). Considering the deterministically imposed initial damages, the probability of the
i node in the condition state DF, becomes:

P(DE)=5" @)

The probability that the " node fails in the cascading event P(CE) is:
P(CE)=P(CENDE) =P(D_E)P(CE. [DE )= (1-P(DE))P(CF, |ﬁ) (5)

Similarly, the probability that the i node survives and is functional with availability P(A,)
is:
p(a,)=P(,N(DENTE)) = P(DF, NCF) (4, |(DF NCE))

=(pP(DF,.)—P(CE))P(A,|(DTOCT-))

(©6)

The integral in the Equation (3) may be calculated either analytically or numerically depending on the
formulation of the problem. For the probabilitics in the Equations (5) and (6), a simple method appropri-
ate for this purpose is the Monte Carlo method because they cannot be expressed explicitly. To estimate
the probabilities of the nodes in different condition states, we need to know the total number of the nodes

in these states in the Monte Carlo simulations. In

Figure 1, the simulation procedure of cascading event with imposed deterministic failure

nodes in the initial phase is illustrated, which can be also used as modulus in the simulation of
the system under uncertain initial damages by natural hazards.

Removal of the nodes that failed directly under hazards

Definition of number of simulations of cascading event M", p=1

Simulation of cascading event [

Fl"he p" simulation: Generate random numbers R¥ (i=12,-,N) *
¥

’ Formulation of new graph model ¢ and redistribution of internal flow Lf

F
e

Any node: RF" < L:‘FG (i=1,2,++,N)

Calculate M, M7, and M :

M (M, M"): total number of the i node in the state CE (A, U,).

Figure 1: Flow chart of simulation of cascading event by Monte Carlo simulation
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4 VULNERABILITY AND ROBUSTNESS OF NETWORKED SYSTEMS

The aim of probabilistic modeling of networked system is the risk assessment. As introduced
above, the risk of one node of a networked system is the sum of the multiplication of the proba-
bilities of the node in various condition states with the corresponding consequences (sce Table
1), while the risk of the whole system is simply the sum of the risks of all the nodes of the sys-
tem. However, the calculation of the total risk does not provide specific information concerning
the performance of a system. To this end, the indicators vulnerability and robustness as de-
scribed in Faber (2009) may enhance system understanding and thereby also facilitate the iden-
tification of more efficient risk reducing measures. The vulnerability of a system considers the
measurement of the total direct consequences associated with the system, while the robustness
of a system describes the contribution of the direct risks to the total system risk. In a robust sys-
tem the indirect risks do not contribute significantly to the total system risk, see also Baker et al.
(2008).

Indexes of vulnerability and robustness (denoted 7y and Iy here respectively) are presented in
Baker et al. (2008) as means to quantify vulnerability and robustness of structural systems re-
spectively. These indexes may be utilized for systems in general as also outlined in Faber
(2009). The index of vulnerability is defined as the ratio of the direct risk to the sum of direct
consequences associated with the loss of each component of the system. In the modeling of
networked systems presented above, the nodes of the system are its components. Following the
introduction by Baker et al. (2008), the index of vulnerability for networked systems is:

I RDir (’7)

v=> N
hXen

i=1

where R, is the direct risk from various hazards. The index of robustness measures the contri-
bution of the direct risk to the total system risk:

R
- ®
Ry + Ry

where R, represents the indirect risk from various hazards. The direct and indirect risks con-
cern both the probabilities of various states of the nodes in the system and the corresponding
consequences as shown in Table 1. Consider as an example one special type of networked sys-
tem, for which all the individual nodes have the same reconstruction cost and costs of loss of
functionality. The two indices introduced above will be equivalent or proportional to other exist-
ing indicators of the performance of networks, e.g. relative size G by Motter & Lai (2002) and
connectivity loss €, by Duefias-Osorio & Vemuru (2009). However, note that the two conse-
quences, reconstruction cost and loss of functionality, act as the weights of the individual nodes
in the risk evaluation of the system performance and the uncertainties in the system presented in
this paper are also integrated in the two indices.

Consider the networked systems under uncertain initial damages caused by natural hazards. It
is possible to compute the risk of the i node subject to a given hazard, which is the sum of the
multiplication of the consequence of cach scenario with its corresponding probability of occur-
rence. The risk obtained here is then integrated over all the demands from natural hazards and
all the nodes in the system. The direct and indirect risks of the system are:

RDJ;

ic} (P(DE)+P(DE:) P(CE oF ) (9)
Ry = icﬁ (P(DF,)-HD(D_F!)P(CE |ﬁ;)+P(ﬁ¥)P(Uf |ﬁ~1—)) (10)

where all the variables in the integrations are illustrated in terms of N-component column vec-
tors composed by their corresponding values of the N nodes in the system, e.g.
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=80 Ch " . The unconditional index of vulnerability and unconditional index of ro-
bustness can be obtained directly using Equations (7) and (8) respectively.

Now consider the networked systems with certain initial damages (e.g. under a specified in-
tentional attack). The direct and indirect risks of the system are:

Roppn = inP(CE A™) (11)

R :?;:Q” (P(cE[a™)+p(U,[a")) (12)

5 EXAMPLE

5.1 Introduction

In the following, the proposed probabilistic modeling is applied to a 20-node electrical power
grid, whose graph model is illustrated in Figure 2. There are a total of 9 supply nodes in the
graph model and the remaining 11 nodes are distribution nodes. The supply nodes represent the
high voltage substations to generate the electricity. The electricity is distributed to the users by
the low voltage substations represented by distribution nodes in the graph. The parameters re-
lated to the consequences, including the reconstruction costs and utilities of the two types of
nodes in the network, are listed in Table 2. The risk analysis here considers two main aspects, 1)
the network with imposed deterministic damage states and 2) the network with uncertain initial
damages, based on the following assumptions:

(1) Earthquake is considered as the only potential natural hazard as the cause of uncertain ini-
tial damages. The measure of the intensity of the earthquake at the nodes is expressed in terms
of peak ground acceleration (PGA), which is assumed to be same for the whole network consi-
dering the small area covered by the network.

(2) Since the demand from the natural hazard (earthquake) is defined by a single variable,
PGA, the resistance of the nodes to external hazards is also expressed in terms of this variable.
(3) The resistances of different nodes, to earthquake and to internal flow demand respectively,
are statistically independent and they have same distribution with different probabilistic charac-
teristics. The adopted probabilistic modeling of the resistances to earthquake and internal flow
demands is summarized in Table 3.

(4) The internal flow of the electrical distribution network is directed from high voltage subs-
tations (supply nodes) to low voltage substations (distribution nodes). The internal demand of
one node, therefore, is defined as the number of shortest paths that pass through it when the
flow is distributed from each available supply node to each distribution node.

[J: supply node
(O: distribution node

Figure 2: Graph model of the 20-node electrical distribution network
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Table 2. Reconstruction costs and utilities of the nodes

Supply node

Distribution node

Reconstruction cost

Utility

2,
0

1
5]

Table 3. Probability modeling of resistances of the nodes

Prob. distr. Mean value COV
External- Supply node Lognormal 0.1(g) 0.5
Earthquake Distribution node Lognormal 0.15(g) 0.7
e Supply node Lognormal (1+a)Lf. 0.05
Distribution node Lognormal (1+a) L, 0.05

Table 4. Index of vulnerability and robustness of the network with imposed deterministic damage states

No. of node removal & | fn

o=0.1 a=0.2 a=0.3 a=0.1 a=0.2 a=0.3
1 0.4222 0.3655 0.3262 0.2442 0.2313 0.2202
2 0.2811 0.2161 0.1480 0.2794 0.3036 0.3280
3 0.0466 0.0050 7.95%x107 | 0.2947 0.2861 0.2857
4 0.0466 0.0050 7.29x107° | 0.1410 0.0263 0.0004
5 0.0466 0.0050 7.20x107° | 0.0690 0.0094 0.00014

5.2 Network with imposed deterministic damage states

In this part, the risk of the network is evaluated in the case that one to five supply nodes with
largest internal initial demands are removed intentionally. The five supply nodes considered in
the initial event are 12, 8, 15, 19, 18 in descending order of their initial demands. That is, the
cases that “removal of one supply node” and “removal of two supply nodes” correspond to “re-
moval of node 127 and “removal of node 12 and node 8” respectively. The rest can be deduced
by analogy. The objective here is to assess the index of vulnerability and the index of robustness
of the network with imposed deterministic damage states. The number of MC simulations in the
calculation is 10°, and the results are shown in Table 4. From the results, it can be seen that the
two indices do not always follow same trend with the change of & and the number of node re-
moval. In the case that three or more nodes are removed at the beginning, both the two indices,
especially Iy, are very small. That means the system become relatively stable, and the situation
where more nodes are removed intentionally will not necessarily lead to cascading failure. The
likelihood of cascading failure does not increase with the increase of the number of node re-
movals.

1 I — 05 4oy ;
s -

0.9 - .
2048 7 £0.4- 7\4-,'\ /! g/ :
Zo. ; 2 azo \,\
Fo7 & O~
50,6 £0.3
=] £ =23
Eos ; z
=04 7N Z03t
503 L w=3 =
2 l—0y/ E
202078 w2 0.1

[{N] =1

g g 02 07 o % o1 07 s

02 0.3
PGA(R)
(2) PGA vs. Index of Robustness

PGMg)us
(1) PGA vs. Index of Vulnerability

Figure 3: Risk assessment of the network subject to various intensities of earthquake (PGA)
(Note that the curves “a=17, “¢=2", and “a=3" are overlapped in both figures)
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5.3 Network with uncertain initial damages

Now consider earthquake hazards as the cause of the uncertain initial damages. The indices of
the two indicators of the risk of the network with different values of tolerance parameter a
(=0.1, 1, 2, and 3) are in this case investigated with the variation of the PGA.

The resultant indices differs only slightly between the network with the tolerance parameter
a=0.1 and the networks with tolerance parameters @ = 1, 2 or 3 when the PGA is small (the in-
dex I, of the network with a=0.1 is about 15% more than that of the network with a=1, 2 or 3
when the PGA is 0.05(g), which is not clear in Figure 3). A small intensity of the earthquake
will change the system a little at the beginning. However, if there is little safety margin of the
nodes to resist the variation of the demand of the internal flow, the system is relatively unstable
subject to small changes of the system. As long as the PGA is large, the failure probabilities of
all the nodes in the initial phase are relatively high and the influence of the safety margin of the
nodes can be ignored. It can also be seen from Figure 3 that the increase of the tolerance para-
meter, e.g. from 1 to 2, may not always improve the index of robustness and the index of vulne-
rability of the network. The index [, keeps increasing with the increase of the PGA. The index
I » however, decreases when the value of PGA changes from 0.1 to 0.2. The reason for this is
that although both the direct risk and the indirect risk of the network increase with the increas-
ing intensity of earthquake (PGA) their rate of change may be different. If the indirect risk in-
creases more quickly than the direct risk, e.g. some nodes are surviving but not available, the
index of robustness will decrease.

6 CONCLUSION

A probabilistic modeling of networked systems is proposed here to facilitate the risk assess-
ment, which presents the uncertainties and consequences associated with the performance of
networked systems subject to hazards and loss of functionalities and integrates the performance
of the system in the both initial phase of node failures and the scenarios of node failures in the
cascading phase into a uniform framework. The proposed modeling provides a basis for the risk
assessment. To realize the risk assessment in practice, some problems such as the necessary
number of MC simulations and the identification of dominant failure modes in the cascading
phase are of interest and need further study.
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ABSTRACT: This paper employs the notion of fragility to investigate the seismic vulnerability
of bridges subjected to spatially varying support motions. Fragility curves are developed for
four highway bridges in California with vastly different structural characteristics. The input in
this analysis consists of simulated ground motion arrays with temporal and spectral
nonstationarities, and consistent with prescribed spatial variation patterns. Structural damage is
quantified through displacement ductility demands obtained from nonlinear time-history analy-
sis. The potential use of the ‘equal displacement’ rule to approximately evaluate displacement
demands from analysis of the equivalent lincar systems is examined.

1 INTRODUCTION

For a structural component or system of interest, seismic fragility represents the probability that
the demand imposed by earthquake loading will exceed a prescribed threshold, conditioned on a
measure of ground motion intensity. The notion of fragility has been used widely to convey
probabilistic information on seismic related damage (e.g., Kennedy & Ravindra 1984, Singhal
& Kiremidjian 1996, Straub & Der Kiureghian 2008). Empirical fragility curves are developed
using actual damage information from past earthquakes, whercas analytical fragility curves are
based on simulation of structural response to seismic excitation. Existing models of analytical
fragility curves for bridges (e.g. Shinozuka et al. 2000, Karim & Yamazaki 2001, Gardoni et al.
2003, Nielson & DesRoches 2007) vary as to the types of bridge structures examined, the char-
acteristics of the considered input excitations, the selected measures of structural damage and
ground motion intensity and the employed analysis methods. The vast majority of these studies
assume uniform support motions; however, ground motion spatial variability may have signifi-
cant influence on bridge response (Konakli & Der Kiureghian 2011).

Fragility curves for bridges subjected to differential support motions have been developed by
considering stationary input (Lupoi et al. 2005) or by accounting for temporal nonstationarity in
ground motions simulated with the spectral representation method (Deodatis et al. 2000, Saxena
et al. 2000, Kim & Feng, 2003). In the aforementioned mcthod, iterations required to match the
target response spectra may alter the coherency characteristics of the initially generated ground
motion arrays that are consistent with the assumed spatial variation pattern (Saxena ct al. 2000).
Furthermore, with the exception of Kim & Feng (2003) who considered several measures of
ground motion intensity, fragility curves incorporating effects of spatial variability have been
developed as functions of Peak Ground Acceleration (PGA), which may be a poor measure of
the ground motion damage potential, as demonstrated subsequently in this paper.

In the current study, spatially varying support motions with temporal and spectral
nonstationarities are simulated with the method developed by Konakli & Der Kiureghian
(2012). This method extends earlier works by Vanmarcke & Fenton (1991) and Liao & Zerva
(2006), and generates ground motion arrays that incorporate effects of wave passage, represent-
ing the time delay in the arrival of seismic waves at separate locations; incoherence, represent-
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ing random differences in the amplitudes and phases of seismic waves at separate locations,
caused by reflections and refractions and/or by the differential superpositioning of waves origi-
nating from an extended source; and differential site response, representing variations in the
amplitudes and frequency contents of the surface motions, caused by propagation of the bedrock
motions through varying soil profiles. Comparisons between coherency estimates from simulat-
ed arrays with the respective target coherency models demonstrate excellent agreement
(Konakli & Der Kiureghian 2012). Preliminary investigations indicate higher correlation of
structural damage with Spectral Acceleration (SA) than with PGA; thus, SA is used to charac-
terize ground motion intensity. Pier displacement demands are evaluated with nonlinear time-
history analysis. The potential use of the ‘equal displacement’ rule to approximately evaluate
inelastic demands from analyses of the corresponding elastic systems is also examined.

2 BRIDGE MODELS

Fragility curves are developed for four highway bridges designed by the California Department
of Transportation (Caltrans). These are prestressed concrete box-girder bridges that vary as to
the number and length of spans, the configuration of the bents and the overall stiffness.

Idealized models of the bridges are shown in Figure 1. The Penstock Bridge is a four-span
bridge with a single pier per bent. The deck has a vertical grade, varying from 0.3% to 2.1%,
and a constant horizontal curvature of radius R = 458m. The columns are rigidly connected to
the deck at the top and fixed in all directions at the bottom. The South Ingram Slough Bridge is
a two-span bridge with two piers per bent. The deck has a vertical grade, varying from —0.52%
to —0.85%, and a constant horizontal curvature of radius R = 1542.3m. The columns are rigidly
connected to the deck at the top and fixed in all directions at the bottom. The Big Rock Wash
Bridge is a three-span bridge with three piers per bent. The longitudinal axis of the bridge is a
straight line. The deck is characterized by a constant profile grade of 0.5%. The piers are rigidly
connected to the deck at the top, whereas the bottom supports are fixed in all translational direc-
tions and free in all rotational directions. The Auburn Ravine Bridge is a six-span bridge with
two piers per bent. The deck has a vertical grade of 0.3% and a horizontal curvature of radius R
= 1616m. The piers are rigidly connected to the deck at the top, whereas the bottom supports are
fixed in all translational directions and free in all rotational directions. The ends of all four
bridges are supported on seat abutments. The abutment response is modeled through two hori-
zontal translational springs, whereas vertical translations are fully constrained.

Following Caltrans recommendations, 3 elements per pier are used in the finite element mod-
els. The number of elements in each span varies according to the span length. Condensing out
rotational degrees of freedom (DOF), the resulting number of translational unconstrained DOF
is 103 for the Penstock Bridge, 55 for the South Ingram Slough Bridge, 89 for the Big Rock
Wash Bridge and 163 for the Auburn Ravine Bridge.

In linear elastic analysis, the flexural stiffness of the pier elements is the effective stiffness
obtained from moment-curvature analysis. No stiffness reduction is required for the deck ele-
ments. The fundamental periods of the corresponding bridge models are 2.38s for the Penstock
Bridge, 1.24s for the South Ingram Slough Bridge, 0.61s for the Big Rock Wash Bridge and
0.59s for the Auburn Ravine Bridge.

The nonlinear models differ from the corresponding elastic models only in the representation
of the piers. These are modeled with force-based nonlinear elements with distributed plasticity.
For the piers of the Penstock Bridge and the South Ingram Slough Bridge, 5 integration points
along each element are defined, whereas for the shorter piers of the Big Rock Wash Bridge and
the Auburn Ravine Bridge, the number of integration points per element is 3. For all four bridg-
es, the cross-sections of the pier elements are modeled as fiber sections with 12 subdivisions in
the circumferential direction and 8 and 4 subdivisions in the radial direction for the core and the
cover, respectively. The reinforcing steel bars are specified as additional layers. The properties
of the unconfined concrete and the reinforcing steel are the expected material properties defined
by Caltrans specifications, whereas the properties of the confined concrete are determined ac-
cording to Mander's model. The fiber model of the pier section accounts for interaction between
axial force and bending moment. The shear and torsional behaviors are described by aggregated
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uniaxial models with the shear yield force determined from Caltrans recommendations and the
torsional yield force evaluated from theory of strength of materials.
Rayleigh damping is considered with the parameters adjusted so that the damping ratios of

the lower modes are close to 5%.
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Figure 1. Bridge models.

3 INPUT EXCITATIONS

Synthetic ground motion arrays are generated with the method developed in Konakli & Der
Kiureghian (2012). This method requires specification of a seed accelerogram at a reference lo-
cation, a coherency function that describes the spatial variability of the ground motion random
field in the frequency domain, and the Frequency Response Functions (FRF) of the soil columns
underneath the bridge supports. The unconditional approach of this methed, employed herein,
simulates arrays of motions with uniform variability at all support points.

Two seed accelerograms are considered in this study; the fault-normal (FN) components of
the Hollister South & Pine (HSP) record from the 1989 Loma Prieta earthquake and of the
Pacoima Dam (PUL) record from the 1971 San Fernando earthquake. By using recorded
accelerograms as seeds, the simulated motions inherit temporal and spectral characteristics of
real earthquake motions. To achieve nonlinear bridge response, the HSP record is scaled with a
factor of 1.5. (No scaling is applied to the stronger PUL record.) The corresponding acceleration

time histories are shown in Figure 2.
The coherency between the ground acceleration processes at two sites, & and /, as a function

of frequency, ©, is given by (Der Kiureghian 1996)
Yii (UJ) ] ‘YH ([0] Htalieens eXp{l'I:BM (m)wmffpm'mge & Bkg' (w)ﬁire response ]} (I)

in which |y, (@)™ =exp[ — (ad,w/v,)’] describes the incoherence component (Luco &
Wong 1986), 0, (@)™ = — wd; !V, 18 the phase shift due to the wave-passage effect,
and 0, (0)"™ """ =tan™" {Im[k, (®)h,(~©)]/Re[h, (0)k, (~®)]} is the phase shift due to the
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site-response effect. In these expressions, o is an incoherence parameter, d, is the distance be-
tween supports k and /, v, is the shear wave velocity of the ground medium, dj, is the pro-
jected horizontal distance in the longitudinal direction of wave propagation, v,,, is the surface
apparent wave velocity, and A (w), s =4k,/, is the FRF for the absolute acceleration response
of the site associated with the sth support DOF. In the current example, /& (®) is described by
the FRF of the single-degree-of-freedom oscillator.

For all bridges, it is assumed that waves propagate in the direction from abutment 1 to the
abutment at the other end of the bridge. Four cases of spatial variability are considered: case 1 is
uniform support excitations; cases 2 and 3 incorporate effects of incoherence and wave passage,
and represent two different levels of incoherence, a=0.2 and a=0.4, respectively; case 4 is
case 2 plus site-response effects. For each bridge, the excitation in case 1 is the motion at a ref-
erence support from the corresponding array in case 2. The reference supports are bent 3 for the
Penstock Bridge, bent 2 for the South Ingram Slough Bridge, bent 2 for the Big Rock Wash
Bridge and bent 4 for the Auburn Ravine Bridge. In cases 2-4, the parameter values
v, =600m/s and Vapp =400m/s are adopted. In case 4, the assumed variation of firm (F), me-
dium (M) and soft (g) soil types at the supports from left to right is FMSMF for the Penstock
Bridge, FSF for the South Ingram Slough Bridge, FMSF for the Big Rock Wash Bridge and
FMSMSMEF for the Auburn Ravine Bridge. For each of the cases 1-4 with the HSP record as
seed, and 1-2 with the PUL record as seed, 20 support motion arrays are generated. These mo-
tions are applied as transverse excitations.

HSP record, FN component PUL record, FN component

kA i e e el

20 30 40
Time, s Time, s
Figure 2. Acceleration time histories of seed records.

4 FRAGILITY ANALYSIS

Using a common convention, fragility curves are described by lognormal cumulative distribu-
tion functions (CDF). The parameters of the lognormal distribution are evaluated with the max-
imum likelihood method: Let [, and D, denote the values of the ground motion intensity and
demand measures, respectively, in the Ath simulation. Let D, denote the threshold value of the
demand measure that defines ‘failure’. Adopting the approach by Shinozuka et al. (2000), the
kth simulation is considered a realization of a Bernoulli experiment with possible outcomes ‘1’
or ‘0’ depending on whether D, exceeds D,,, or not. The probability of the outcome *1” at the
kth trial is given by F(7, )= (Dﬁn(fk /¢)/t], in which F denotes the fragility function, @ is the
standard normal CDF, and ¢ and { are the parameters of the lognormal distribution (median and
log-standard deviation, respectively) to be estimated.

In the following analysis, damage is quantified through the displacement ductility factors of
the piers, denoted . These factors are defined as the ratios of the maximum pier drifts evaluated
from nonlinear time-history analysis to the corresponding yield drifts. The yield drifts are ob-
tained from double integration of the curvature along the pier height, assuming that the section
with the largest curvature has just yielded. The yield curvature is determined from moment-
curvature analysis at section level. Each of the four bridges examined herein has piers with iden-
tical cross-sections and thus, identical yield curvatures.

A preliminary analysis is performed to select the ground motion intensity measure between
the typically used PGA and SA. For each bridge and for all simulations in case 2, Figure 3
shows the maximum ductility factor among all piers, p, versus PGA in the left graphs, and ver-
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sus SA in the right graphs. Since PGA and SA vary among the bridge supports, the mean values
over all support points are plotted. This figure clearly indicates a higher correlation of damage
with SA, which is adopted as the ground motion intensity measure in the following analysis.
(Similar observations were made for the other cases of spatial variability examined in this
study.) In Gardoni et al. (2003), the appropriateness of SA to characterize ground motion inten-
sity has been demonstrated as a result of a step-wise deletion process.

Accounting for the ranges of ductility factors obtained in the simulations, the threshold values
that define failure are selected as p, =2 for the Penstock Bridge, ., =2 for the South In-
gram Slough Bridge, p,,, =3 for the Big Rock Wash Bridge and u,, =2 for the Auburn Ra-
vine Bridge. Each bridge is considered a series system, i.e., failure occurs when W, is exceed-
ed for at least one pier. The estimated medians and log-standard deviations of the fragility
functions are listed in Table 1. The corresponding curves are shown in Figure 4: The graphs on
the left show fragility curves for cases 1-4 with the HSP record as seed, and thus, demonstrate
effects of different spatial variation patterns. The graphs on the right show fragility curves for
cases 1-2 for both HSP and PUL, and thus, demonstrate sensitivities with respect to the charac-
teristics of the seed record. For both seeds, effects of spatial variability are mild on the Penstock
Bridge and the South Ingram Slough Bridge, i.¢., on the two more flexible bridges, and are more
pronounced on the stiffest Auburn Ravine Bridge. The latter is less vulnerable to spatially vary-
ing support motions than to uniform motions. The opposite trend, i.e. increased seismic vulner-
ability due to spatial variability of the support motions, has been reported in other studies
{(Deodatis et al. 2000, Saxena et al. 2000, Kim & Feng, 2003, Lupoi et al. 2005). Differences in
the approaches of those studies versus the approach employed herein are mentioned in the In-
troduction.

Computational cost as well as convergence and stability problems are main drawbacks in the
nonlinear time-history analysis approach. Consideration of spatial variations in the input poses
additional challenges by further complicating the system of nonlinear equations to be solved.
Therefore, approximate simplified analysis methods are of major interest. On the basis of the
‘equal displacement’ rule (Veletsos and Newmark, 1960), displacement demands computed for
the linear structure can be used to approximate the inelastic displacement demands as long as
the fundamental period of the structure is larger than the predominant period of the site. In Cal-
trans design practice, the ‘equal displacement’ rule is adopted for bridges with fundamental pe-
riods within the range 0.7s and 3s. Table 2 lists the medians of the lognormal distributions de-
scribing the fragility curves estimated with the same approach as before, but with the
displacement demands computed from linear time-history analysis. The numbers in the paren-
theses are the ratios of these approximate median estimates to the medians listed in Table 1.
These ratios demonstrate trends consistent with results from analyses under uniform excitations:
Approximations of the ‘equal displacement’ rule tend to be slightly conservative for ‘sufficient-
ly flexible’ structures (Gupta and Krawinkler 2000) and depend on ductility factors for struc-
tures with lower fundamental periods (Vidic et al. 1994).

Table 1. Medians (in units of g) of fragility curves. (The numbers in parentheses are the corresponding
log-standard deviations.)

Bridge name HSPcase 1 HSPcase2 HSPcase3 HSPcase4 PULcasel PUL case?2
Penstock 0.36 (0.17) 0.34(0.18) 038 (0.03) 0.38(0.12) 0.33(0.11) 0.33(0.11)
S. Ingram Slough 0.87(0.00) 0.91(0.13) 0.85(0.07) 0.85(0.09) 0.85(0.00) 0.89(0.00)
Big Rock Wash 0.37 (0.30) 0.44(0.11) 044 (0.13) 0.44(0.19) 0.73(0.25) 0.83(0.21)
Auburn Ravine 1.01 (0.11) 1.65(0.32) 1.26(0.11) 2.76(0.94) 0.86(0.20) 1.13(0.43)

Table 2. Medians (in units of g) of fragility curves obtained with the ‘equal displacement’ rule. (The
numbers in parentheses are the ratios of the medians in Table 2 to the medians in Table 1.)

Bridge name HSPcase 1 HSPcase?2 HSPcase3 HSPcase4 PULcasel PUL case?2
Penstock 0.32(0.89) 0.28(0.82) 0.30(0.79) 0.31(0.82) 0.35(1.06) 0.29(0.88)
S. Ingram Slough 0.70 (0.80) 0.80(0.88) 0.80(0.94) 0.77(0.91) 0.75(0.88) 0.75(0.84)
Big Rock Wash 041 (1.11) 0.45(1.02) 040(0.91) 0.41(0.93) 0.79(1.08) 0.76(0.92)
Auburn Ravine 0.87 (0.86) 1.07(0.65) 1.19(0.94) 1.30(0.47) 0.78(0.91) 0.75 (0.66)
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5 CONCLUSIONS

Effects of ground motion spatial variability on seismic fragilities were investigated for four
highway bridges in California. Arrays of ground motions with temporal and spectral
nonstationarities, and consistent with prescribed spatial variation patterns, were used as input.
Damage was quantified through pier displacement ductility factors, evaluated from nonlinear
time-history analyses. Effects of spatial variability were more pronounced for the stiffest among
the bridges; for this bridge, spatial variations decreased seismic vulnerability. Approximations
of the ‘equal displacement’ rule demonstrated trends similar to those reported in literature for
the case of uniform excitations.
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Figure 3. Maximum displacement ductility factors versus PGA (left graphs) and versus SA (right graphs).

213



Penstock Bridge

1 1
0.8t 1 0.8 1
06 Z 06 1
=) =
E 04 HSP, case 1 | 2 04 HSP, case 1 ]
........ HSPF. case 2 s HEE, vage:d
0.2 —— - HSP, case 3 ] 0.z ——PFUL case 1]
0 i —"*HSP,Icasaé 0 - ) " PUL case 2
0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.e 1
SA, g SA, g
South Ingram Slough Bridge
1 - 1
& :
0.8 /’ - 0.8 :
Z o6 1 zos
= =
=04 B E 04 : 1
02t !f 02 : 1
0 it 0 -
0 0.5 1 15 1} 0.5 1 1.5
SA, g SA, g
1
0.8 J
£ 06 4
%
s 04 1
0.z
0
0 15
Auburn Ravine Bridge
1 1
0.8 D8}
06 06
= g
E 04 E 04 1
0.2¢ 0.2 1
0 0
0 0 2

Figure 4. Fragility curves.

214

SAa g




Reliability and Optimization of Structural Systems — A. Der Kiureghian & A. Hajian (eds)
© American University of Armenia, Yerevan, Armenia, ISBN 978-0-9657429-0-0

Bridge management system of a large number of bridges
using genetic algorithms

K. Nakatsu & H. Furuta
Faculty of Informatics, Kansai University, Takatsuki, Osaka, Japan

K.Takahashi, K. Ishibashi & T. Umeckage

Graduate school of Informatics, Kansai University, Takatsuki, Osaka, Japan

ABSTRACT: Recently, the bridge management in Japan has become very important and urgent,
because the number of existing bridges requiring repair or replacement has increased drastically.
The long term planning for bridge management has been attempted to improve the safety and
serviceability by reducing Life Cycle Cost (LCC) for maintenance. In the previous study, a
bridge maintenance plan minimizing LCC is searched by Improved Genetic Algorithm (IGA),
which can provide flexible periods for some maintenance actions. Using the numerical simula-
tion, it is confirmed that the plan is more robust against various uncertainties without increasing
LCC by introducing the flexible period. However, a lot of computation time is needed for the
long term planning of a large number of bridges due to the enormous combinations. Therefore,
it is desirable to improve the convergence and to reduce the computation time. In this study, an
attempt is made to propose a maintenance planning method that can produce more accurate so-
lution for a large number of bridges. At first, in the proposed method, a maintenance plan for
each bridge is searched by minimizing its LCC. Next, the overall solution is derived by modify-
ing the solutions obtained for each bridge with the aid of the possible flexible periods that can
postpone some maintenance works. Performing simultaneous maintenance works within some
flexible periods, it is possible to obtain a reasonable maintenance plan for a large number of
bridges, based on the plans obtained for each bridge. Numerical examples are presented to dem-
onstrate the applicability and efficiency of the proposed method.

1 INTRODUCTION
Recently, the bridge management in Japan has become very important and urgent, because the
number of existing bridges requiring repair or replacement has increased drastically. However,
it is difficult to sustain the management in the future due to the shortage of engineers and budg-
et. In the circumstances, the long term planning for bridge management has been attempted to
improve the safety and serviceability by reducing Life Cycle Cost (LCC) for maintenance (Fu-
ruta et al. 2006; Ito et al. 2002). In the previous study, a bridge maintenance plan minimizing
LCC is searched by Improved Genetic Algorithm (IGA) (Nakatsu et al. 2011), which can pro-
vide flexible periods for some maintenance actions. Using the numerical simulation, it is con-
firmed that the plan is more robust against various uncertainties without increasing LCC by in-
troducing the flexible period. However, a lot of computation time is needed for the long term
planning of a large number of bridges due to the enormous combinations. Therefore, it is desir-
able to improve the convergence and to reduce the computation time. Although it is possible to
obtain an approximate solution by combining the solution for each bridge minimizing LCC, it
may give a large difference due to the cost such as general and administrative costs between the
approximate solution and the optimum solution searched for a large number of bridges at the
same time.

In this study, an attempt is made to propose a maintenance planning method that can produce
more accurate solution for a large number of bridges. At first, in the proposed method, a main-
tenance plan for each bridge is searched by minimizing its LCC. The proposed method estab-
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lishes a plan considering preventive maintenance by applying Genetic Algorithm (GA) (Gold-
berg 1989). Next, the overall solution is derived by modifying the solutions obtained for each
bridge with the aid of the possible flexible periods that can postpone some maintenance works.
Performing simultaneous maintenance works within some flexible periods, it is possible to ob-
tain a reasonable maintenance plan for a large number of bridges, based on the plans obtained
for each bridge. Numerical examples are presented to demonstrate the applicability and effi-
ciency of the proposed method.

2 OPTIMAL PLANNING OF LONG-TERM BRIDGE MANAGEMENT

The purpose of bridge management is to prolong the life of bridges by repair and reinforcement
against the degradation. In order to sustain the safety of bridge, it is common to keep the intact
state by regular detailed inspection, high-quality repair, reinforcement and renovation. However,
it is actually difficult to perform the above maintenance. This is because these require a lot of
cost and manpower. Therefore, it is important to establish a long-term bridge management plan.
A long-term plan is useful to reduce the maintenance cost with sustaining the safety based on
the deterioration prediction. In addition, this plan is useful to estimate for long-term budget; it is
possible to improve the accountability to citizens by visualizing the purpose of budget.

2.1 Application problem

In this study, the proposed method is applied to the planning of management for 100 years. The
application problem is same as the existing research (Furuta et al. 2009; Nakatsu et al. 2011).

I' In maintenance planning, it is required to sustain the safety of all components during their
service period. In this study, the service period is set to be 100 years. Therefore, the purpose of
planning is to minimize the maintenance cost under the circumstances. The performance of
component to sustain the safety is more than 0.8 as well as the previous research (Furuta et al.
2009; Nakatsu et al. 2011). This is because the purpose of this paper is to verify the applicability
of planning method through numerical examples. This value should be determined on the basis
of safety required in the maintenance management in the real-world problem.

2.2 Problems involved in maintenance planning

In the long-term planning, maintenance cost may change due to the change of plan. The change
of circumstances due to uncertainties is considered as causes of change of plan.

2.2.1 Change of plan due to uncertainties

In the bridge maintenance, a change of plan can happen due to uncertainties like an error of de-
terioration prediction. It is difficult to accurately predict deterioration because the appropriate
method has not been developed yet. If the development of deterioration is faster than that pre-
dicted, the lack of safety performance and the change of cost due to moving up a maintenance
work occur. On the other hand, if the development of deterioration is slower than the predicted
one, the maintenance work spends extra cost because works unnecessary to acquire the safety
are performed. Thus, in the long-term planning, it is important to establish a plan that can be
changed by minimal increase cost with robustness against uncertainty involved in the deteriora-
tion.

2.2.2 Planning for a large number of bridges

Local governments in Japan are managing the several hundred numbers of bridges. The pre-
vious method (Furuta et al. 2009; Nakatsu et al. 2011) cannot search the optimal solution due to
enormous combinations of a large number of bridges. Therefore, a maintenance planning me-
thod is needed that can produce more accurate solution for a large number of bridges.

Although it is possible to obtain an approximate solution by combining the solution for each
bridge minimizing LCC, it may give a large difference due to the cost such as general and ad-
ministrative costs between the approximate solution and the optimum solution searched for a
large number of bridges at the same time. Therefore, in this study, the overall solution is derived
by modifying the solutions obtained for each bridge with the aid of the possible flexible periods
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that can postpone some maintenance works. Performing simultaneous maintenance works with-
in some flexible periods, it is possible to obtain a reasonable maintenance plan for a large num-
ber of bridges, based on the plans obtained for each bridge.

3 DEALING WITH UNCERTAINTY IN LONG-TERM PLANNING

The costs exist be reduced doing many works in same year, such as genecral administration cost.
Therefore, it is considered that the bridge management plan is necessary to formulate multiple
bridges at the same time. But the method using GA in the previous study (Furuta et al. 2009,
Nakatsu et al. 2011) cannot calculate the optimal solution due to enormous combinations ofa
large number of bridges.

1) Plans for each bridges and searches the flexible period.

2) Searched plans of multiple bridges to combines those flexible terms.
Because the flexible peried shown in previous study (Furuta et al. 2009; Nakatsu et al. 2011) sa-
tisfies preventive maintenance with minimizing the LCC, it covers the suboptimal solution ob-
tained by GA. Therefore, by considering the planning of other bridges in the flexible period for
each bridge, it is possible to obtain an optimal plan considering a large number of bridges with-
out planning at the same time.

3.1 Uncertainty Treatment

The purpose of a long-term planning is not only to minimize the maintenance cost during their
service period but also to estimate a long-term budget. The re-scheduling (Yamada et al. 1998;
Hirai 2008; Ishibuchi et al. 1998; Tamaki et al. 1999) is generally useful to deal with uncertain-
ty. However, the re-scheduling is not useful for a long-term planning because it required a lot of
changes of plan even if the maintenance cost was reduced and the safety was sustained. In addi-
tion, early repair and reinforcement plans cannot reduce the maintenance cost because they have
tendency to perform the maintenance inappropriately.

! The proposed method is applied to a plan obtained with the preventive maintenance to esti-
mate the flexible period. In a long-term planning, preventive and corrective maintenances are
considered due to the relationship between the construction year and the performance of com-
ponent. Figure 1 shows the concept of transition of performance due to corrective maintenance
and preventive maintenance. In the corrective maintenance, repair and reinforcement are per-
formed when the performance is close to the limitation of safety as shown in Figure 1. In this
case, the performance would be lower than the safety level if the deterioration begins earlier
than the predicted. Furthermore, if repair effect is lost faster than that expected, the performance
would immediately become lower than the safety level. On the other hand, the repair and rein-
forcement are performed when the performance begins to deteriorate in the preventive mainten-
ance. Thus, even if the development of deterioration is earlier than that predicted, there is also a
margin to the safety limitation. There is a margin to the safety limitation as well even if the re-
pair effect is lost faster than the expected. Therefore, a plan considering the preventive mainten-
ance is expected to have the robustness against uncertainties; an established plan has a few pos-
sibilities to perform exclusive front-loaded re-scheduling. Focusing on these features, the
proposed method estimates the flexible period of a preventive maintenance plan. Therefore, a
plan established by the proposed method can satisfy both of the safety level and the cost mini-
mization.

performance — preventive

repair ~— corrective

L0 There is enough time

0.8

<

0.0 year

Figure 1: Deteriorations of preventive and corrective maintenance
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3.2 Preventive maintenance planning by GA

32.1 Coding rule

In this study, the coding of gene is defined as shown in Figure 2. In this coding, a gene of indi-
vidual is separated to the repair method and the interval part. The genetic array of each part has
the same length. And, the length is determined so as to deal with the service period by using the
number of years calculated from the interval part. In this study, the length of gene is set 50 years
in order to establish the 100 years maintenance plan as described in Section 2.1. It is not realis-
tic that 50 times of repairs or reinforcements are performed to a component of bridge in 100
years. Thus the length described above is enough to deal with this problem. Here, unnecessary
genes to establish a 100 years plan are not used to optimize.

! The information of gene in the repair method part represents the identification number of re-
pair method. In this study, the identification number of each repair method is set as follows; the
surface painting is 1, the surface covering is 2, the section restoring is 3, the desalting and re-
alkalization is 4, the cathodic protection is 5, the section restoring with surface covering is 6 and
the reconstruction is 7. The genotype described above is converted to the phenotype shown in
Figure 8 in order to use as an annual plan. Here, a part containing 0 in the phenotype represents
a year when a repair and reinforcement are not performed. In the crossover section, the two
parts of gene is performed respectively. The uniform crossover is adopted as the crossover me-
thod in this study. In the mutation section, the two parts of gene are performed respectively as
well as the crossover section. A value of gene is replaced to a randomly generated number in the
repair method part. On the other hand, the operation of mutation in the interval part is performed
as shown in Figure 2. Through this operation, the schedule following to a mutated gene does not
change; the mutation is performed without changing the property of solution candidate.

40

repair method repair interval
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Figure 2: (a)Coding rule, (b)Mutation of interval part

3.2.2 Consideration of selection and constraints

In this study, a fitness of individual per generation is decided along the ranking followed the
sorting rule as well as the previous research (Furuta et al. 2009; Nakatsu et al. 2011). In order to
establish a plan considering the preventive maintenance described in Section 3.1.
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Figure 3: Determination of fitness
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Figure 3 shows the image of the sorting. As shown in Figure 3, individuals are separated to two
groups based on their state. In this figure, a group that satisfies the constraints is superior to
another which violates the constraints. And, individuals are sorted in each group by using each
evaluation. In this study, the evaluation function is defined as in Equation (1). MC, , represents
the maintenance cost required for component p of bridge 4. The development of performance of
component is defined as in Equation (2). £, , , represents the performance of component p of
bridge & in year y. In the service period, the performance of component is required to satisfy the
safety level (Plge = 0.8) as described in Section 2.1 Equations (1) and (2) are determined by

the repair method for each year.
2 2MC, , ()
bop

PI, =PI 2)

bp.y targel

| Under these constraints, the fitness of individual is determined by the following groups and
sorting rule:
® Group 1: Individuals satisfying constraint: Individuals are sorted in ascending-order of
maintenance cost calculated by Equation (1). If they are the same cost, they are sorted in
descending-order of total of performance in the service period.
® Group 2: Individuals that violate either performance or reconstruction constraint: Individu-
als that violate the performance constraint are sorted in ascending-order of total of
lacked performance. Individuals that violate reconstruction constraint are serted in as-
cending-order of total of reconstruction violation year.
® Group 3: Individuals that violate both constraints: Individuals are sorted by the rule de-
scribed in Group 2.
In Group 1, a plan performing a repair and reinforcement in the early stage of deterioration is
superior to others by this sorting if plans spend the same maintenance cost each other. This plan
is considered as a preventive maintenance plan.

3.3 Estimation of flexible period by numerical simulation

An attempt is made to estimate the flexible period which can sustain the safety of bridge in the
preventive maintenance plan established by GA as described in Section 3.2. Estimation proce-
dure is as follows:

@ Step 1: The number of constructing works of each component is m, , (2 0) when the
bridge number is b and component number is p. If m,, , is more than 0, the work number
k is set 0, then works are estimated in order. If m,, ,, is not more than 0, go to Step 4.

@ Step 2: The flexible term of each component is estimated by forwarding the constructing
year of work w;,, « to the year of the next work wj, , ¢+1 in steps of one year. If a perfor-
mance of component is lower than the safety level due to the forwarding, a year of work
is forwarded until the year which can satisfy the safety level.

® Step 3: The work number & is incremented. Then, if £ is smaller than m,, ,, go to Step 2.
Otherwise, go to Step 4.

® Step 4: The flexible period of next component is estimated by following the above proce-
dure in order from Step 1. If all components of all bridges were estimated, this procedure
is completed.

3.4 Planning for a large number of bridges

It plans every few bridges considering the uncertainty by using methods described Section 3.1
and 3.2. Then, the overall long-term bridge management plan is established by combining those

plans.
The proposed method doesn’t cause explosion of the number of combinations and increase

the computation time. Furthermore, it is possible to optimize the cost such as general and ad-
ministrative costs in the flexible period.
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4 FEATURES OF THREE METHODS

This section describes the same time planning, the combination planning and the proposed me-
thod.

4.1 Same time planning

The same time planning is the method planning of all bridges at the same time by using the pre-
vious method (Nakatsu et al. 2011). In this method, it is possible to reduce the LCC including
administrative cost. This is because this method can plan considering administrative cost. How-
ever, because GA is a stochastic search, it is difficult to search the optimal solution as the search
space is huge. Therefore, this method cannot search the optimal solution for a large number of
bridges. For this reason, this method is considered is not practical.

4.2 Combination planning

The combination planning is the method combining plans established every bridge or few
bridges. This method is able to minimize the LCC in planning every few bridges. In addition, it
can be expected an efficient optimization and shorten the computation time sharply because this
method plans every few bridges let search space narrow. However, when managing multiple
bridges, it exists the cost decreases if many maintenance works are done in the same year.
Therefore, it is difficult to minimize the LCC in this method. Therefore, it is necessary to con-
sider an appropriate method for a large number of bridges comparing other method like the
same time planning method.

4.3 Proposed method

In the proposed method, it is used that the flexible term can be changed of the maintenance year
determined in previous study (Nakatsu et al. 2011). This flexible term are made by two steps.
First, it plans to minimize maintenance costs as described in 3.3.3. Second, applying to numeri-
cal simulation for these plans to search the term does not lose safety and cause significant varia-
tion of cost. It is considered the reduction of LCC as well as the same time planning method by
combining maintenance works in the term. Therefore, it is said that the proposed method is ef-
fective, if it is valid that considering the planning of multiple bridges in a large number of
bridges.

5 MAINTENANCE PLANNING OF A LARGE NUMBER OF BRIDGES

5.1 Numerical example

The applicability of the proposed method is verified by applying it to the maintenance planning
of multiple bridges described in Section 2.1 as a numerical example. In the first experiment, it is
presented to demonstrate the effectiveness of reducing the cost of same time planning. In the
second experiment, it is presented to demonstrate the planning of a large number of bridges. In
this study, parameters of GA are set as follows: in the same time planning method, the popula-
tion size is 1,000, the number of generations is 10,000, crossover rate is 60% and mutation rate
is 0.5%. In the combination planning method and proposed method, the population size is 1,000
and the number of generations is 1,000 per one bridge. Experiment is performed five times for

each planning.

5.2 Effect of reducing the cost of same time planning

Table 1 shows the result obtained by the experiments for 10 bridges. In Table 1, the same time
planning method reduces maintenance cost 5% to 10% rather than the combination method. The
construction price obtained when calculating the total cost is included in general and administra-
tive costs which can be reduced the more construction costs during the year. The general admin-
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istration cost is reduced to optimize those construction years considering multiple bridges at the
same time. Therefore, it is important to plan considering multiple bridges for reduction of the
LCC even in a large number of bridges.

Next, it is discussed that the plan established by proposed method optimizes the simultaneous
construction of multiple bridges within in the flexible periods.

The total cost established by proposed method is 4,112,714 thousand Japanese yen. However, in
terms of minimizing LCC, combining the simultaneous construction of multiple bridges within
flexible periods, the total cost is 3,957,574 thousand Japanese yen. If the appropriate year to
conduct simultaneous construction is selected, it is possible to reduce LCC about 3.8%. The
plan that considers the construction of simultaneous by the proposed method, many
constructions has been performed at the same time. For example, 21 bridges is repaired in 52
years, 21 bridges is repaired in 77 years. The results of the proposed method shown in Table 1 is
higher than the same time planning method, but the cost is lower than the combination planning
method about 4.2%. Therefore, it is considered the proposed method can develop the practical
plan a similar cost reduction to the same time planning method.

Table 1. Results of 10 bridges (Unit: JPY 1,000)

method best average standard deviation
same time planning 3,667E+6 3,796E+6 7,511E+4
combination planning 3.944E+6 4,084E+6 1,744E+5
proposed 3,827E+6 3,915E+6 6,544E+4

5.3 Planning of a large number of bridges

Table 2 shows the result obtained by the experiments for 50 bridges. In the same time planning
method with 50 bridges, parameters of GA are set as follows: the population size is 1,000 and
the number of generations is 10,000. The computation time took about 20 hours in the computer
used in experiment (Intel(R) Core(TM) i7 CPU Q740@1.73GHz, Memory 4GB, Windows 7
64bit). However, the same time planning method could not obtain optimum solution. Even if the
population size increased to 5,000 and the computation time took over 100 hours, it could not
obtain optimum solution which is sustained the safety. As GA search space is huge, the search
for the optimal solution falls into a local solution. This is because the search space has become
too huge because the number of combination has become enormous by increasing the number of
bridges. Combinations for planning of 100 years in the bridge 50 is as up to 8" #000individusls
@ 50bridges; the repair per bridge is 50, the population size is 8,000 that combined current gen-
erations 5,000 individuals and next generations 3,000 individuals, and the repair method is 8.
For this vast number of combinations, GA falls into a local solution. Therefore, it could not ob-
tain optimum solution. In the result, it is effective to search the optimum solution for a large
number of bridges at the same time. However, with an increase in the number of bridges, it is
difficult to search the solution at the same time. In practical problem, since it is assumed that the
planning to target more than 50 bridges, the difficulty of planning is far increased.

! The proposed method reduces maintenance costs 3% shown in Table 2 rather than the combi-
nation method. The proposed method could not obtain optimum solution in about 2 hours. In
contrast to the same time planning method, the proposed method could plan in a short time. In
the number of combinations, the proposed method is not to be a large design space as the same
time planning method because of planning to make every each bridge’s. From the number of
possible combinations for the planning, it is difficult to determine whether the obtained solution
is optimum solution. However, performing simultaneous maintenance works within sorne flexi-
ble periods, the proposed method is possible to obtain a reasonable maintenance plan for a large
number of bridges, based on the plans obtained for each bridge. Therefore, the obtained solution
can be estimated and close to the optimum solution, it is considered for the planning of a large
number of bridges, the proposed method is useful.
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Table 2. Results of 50 bridges (Unit: JPY1,000)

method best average standard deviation
same time planning
combination planning 1.827E+7 1.869E+7 2.688E+5
proposed 1.806E+7 1.804E+7 7.146E+3

6 CONCLUSIONS

In this study, an attempt was made to propose a new method that can establish a practical main-
tenance plan for a large number of bridges. Numerical examples demonstrated that the proposed
method can deal with a large number of bridges. The proposed method could obtain optimum
solution in an example with 50 bridges. Furthermore, the proposed method overcame the prob-
lem of computation time and the number of combinations in the previous method by combining
flexible periods of bridges.

However, this study only demonstrated the applicability of the proposed method because the
applied model of repair method adopted only the typical ones; the flexible period was not realis-
tic. Hence, in the future, it is necessary to demonstrate the usefulness of flexible period by ap-
plying more realistic model of repair methods.
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ABSTRACT: Dynamic systems are considered with lumped parameters which experience
random temporal variations with potential short-term excursions out of the “classical” stability
domain. The resulting system’s response is of an intermittent nature with alternating periods of
(almost) zero response and rare short outbreaks. As long as it may be impractical to discard such
a system its response should be analyzed to evaluate reliability. Using parabolic approximation
for parameter variations during excursions the asymptotic solution can be obtained for
probability density of the response and for the first-passage problem The analysis is used also to
derive on-line identification procedure for the system from observed intermittent response.
Influence of nonlinearity in stiffness and damping is studied. Specific examples include
galloping of elastically suspended rigid bodies in cross-flow of fluid; two-degrees-of-freedom
flutter; bundles of heat exchanger tubes with potential flutter-type instability; rotordynamics.

1 INTRODUCTION

Classical definitions of stability and instability deal with long-term behavior of dynamic
systems, that is, behavior as time? —>c0. However these definitions are known to be not
perfectly appropriate for applications with limited service life (such as missiles, projectiles, etc.)
which may sometimes be qualified as acceptable in spite of being unstable in the classical sense.
Design of such marginally unstable systems may be based on analysis of their transient response
within limited service life.

The classical definitions of stability and instability may also prove to be not perfectly
adequate for another class of dynamic systems — those that may be intended for long-term
operation. Such systems are designed, as a rule, to operate within their stability domain in the
classical sense as long as their “nominal” design parameters are considered. However, if the
system’s parameters may experience random temporal variations around their “nominal” or
expected values, the system may become “marginally unstable” within the “smeared” stability
boundary., Whenever complete elimination of this kind of response may lead to impossible or
impractical design, the corresponding short-time outbreaks in response should be analyzed to
evaluate the system’s reliability. Thus, problems of first-passage failure andfor of low-cycle
fatigue may be of concern for a system operating within the transitional state. Relevant dynamic
studies may also be of importance for interpretation of test results for a machine or structure
where intermittent behaviour of the response is observed.

Results of such analyses are presented for the case of slow parameter variations. Linear
models of the systems are studied using parabolic approximation (PA) for the variations in the
vicinity of their peaks together with Krylov-Bogoliubov (KB) averaging over the period for the
transient response. This results in a solution for the probability density function (PDF) of the
response in terms of that of the bifurcation parameter. The response is of an intermittent nature
indeed due to the specific algorithm of its generation, with rare excursions of a bifurcation
parameter into the instability domain. The procedure is also extended to nonlincar single-
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degree-of-freedom systems, which implies use of quasiconservative version of averaging over
the period. The analysis is also used to derive on-line identification procedure for the system
from its observed response with set of rare outbreaks (nicknamed “puffs”).

2 LINEAR SYSTEMS WITH SLOW VARIATIONS OF PARAMETERS

Linear systems with slow stationary random temporal variations of parameter(s) compared to
the system’s natural frequency(ies) are considered in this section. They operate within classical
stability domain for the mean or “nominal” system. But any brief excursion beyond the
instability threshold would lead to growth of the system’s response. The growth is assumed to
be limited as long as the system quickly returns back into the stability domain. The response
would be seen then as a set of spontancous brief outbreaks alternating with intervals of zero
response. Basically the response is transient during each outbreak. The method for analysis is
based on parabolic approximation (PA) (Stratonovich 1967) or Slepian model (Leadbetter et al.
1983) for temporal variation(s) of parameter(s) during its (their) brief excursions into instability
domain. Thus the problem of random vibration is reduced to a deterministic transient problem
with random initial conditions.

The Slepian model (Leadbetter et al. 1983) of a stationary zero-mean random process g(?)
with unit standard deviation implies PA in the vicinity of its peak which exceeds a given level u
— that is during upcrossing level u that starts at time instant # = ( namely

g(t/u)= u+(]/u)(gt—/1212/2) so that g ()= u+gt—(u/2)(/h‘)2

6
forte[O,Zg/ﬂ.qu and max, g(¢) =g(g/12u)=gp —u+c? /2%

Hereafter subscript “p” will be used for peak values of random processes, ¢ is random slope of
g_ a2 F.g
g(t) at the instant of upcrossing and A° =0 = j @ CDgg(a)) dw wherecﬁgg(a)) is power
—00

spectral density (PSD) of g(#) so that Ais a mean frequency of g(t). Thus, according to the
Equation (1) random process g(%) is regarded as deterministic within the high-level excursion of
duration 7 = Aty = 2¢/Au above level u, depending just on its initial slope ¢ al the instant
of upcrossing. This slope is regarded as a random variable for the excursion; in particular, it has
the Rayleigh PDF in case of a Gaussian g(z) (Stratonovich 1967). This probabilistic description
is used together with the solution for the transient response within the instability domain.

The first example is a SDOF system with randomly varying damping — say, Den-Hartog
model of 1D galloping (Den Hartog 1985) under variable wind speed

X+2(afq(t))X+Q2X =0 so thatq(t): oy 'g(f) and u =afo, 2

Substituting approximation (1) into Equation (2) reduces the latter to an ordinary differential
equation (ODE) with a single random parameters . This ODE for a certain representative
crossing should be integrated starting from the instant of upcrossing £, until instant of peak of

X(t) for a given outbreak. Here it can be done analytically using the asymptotic Krylov-
Bogoliubov (KB) method of averaging over the response period for the quite common case of a
lightly damped system (1) with slow temporal variations of the damping coefficient:

|cz - q(r} <<, 1 <<Q (Bogoliubov & Mitropol’skii 1961). The method leads to first-order

ODE for slowly varying .amplitudezﬁl(t):\[Xz-l—).(z/(l2 which has the solution
A(r) = dyexp £ (z); £(7) :(crq/z)[(g/,l)(rz/z)—m3/6],r —A(t—t,), 49 = 4(0) (3)
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The peak amplitude of the response as attained at 7, = 2¢/Au is

A, = A7) = Ayexp(25) where & = (Jq/Sluz)(g/i)3 . @)

This solution together with Equation (1) define in parametric form relation between

4, =4, /Ag and g, - that is between peak values of the amplitude ratio and of g(z) — as long

as both these peak values are obtained as functions of the random nondimensional slope /4 of
g(t) at the instant of the upcrossing. The explicit relation can be simply derived by excluding
c/A. Let Xp =h( g, )for g, =u. Then the function inverse to & (denoted by superscript

“-1”) can be obtained as

g, =u+(s/2)" (Y2u) =17 (4,) =+ (Y2u)| (3020, )1n ZPT’B ©)

These relations open way to predicting reliability for the system (1) based on relevant
statistics of g(z). Thus, the first-passage problem for A(z) with barrier A« is reduced to that for
g(t) with barrier g« = h_i(g*) as evaluated by Equation (5). Furthermore, the PDF of g(?) can
be used to obtain the PDF of Ep and thus of the local peaks of X(7) within the cluster of

response cycles with peak amplitude Ap ; this may be of importance for evaluating low-cycle
fatigue life for a system subject to the short-term dynamic instability. The derivation includes
two steps. First the PDF p, (gp) of peaks of g(f) is obtained from that of the g(7) itself as

described in (Leadbetter 1983, Lin & Cai 1995, Stratonovich 1967); then the basic relation for
the PDF of a nonlinear function of a random variable is applied:

P4, )= pe ! (4, ) an™ | ©

Note that this PDF is non-zero for A p =1 rather than for A p =0 as long as the subcritical
response amplitude 4; has been introduced. Furthermore, according to the Equations (5) and

(6), this PDF has a singularity at Hp = /. It goes without saying that the unconditional PDF

p(zp)is normalized not to unity but to Pr ob{gp > u} . Its direct use for predicting reliability

in engineering applications is possible as long as some information on the most probable actual
subcritical response amplitude 4, is available.
Figure 1 illustrates response sample of the system (1) with & =0.16,(2 =2 which contains

one excursion of the apparent damping into negative domain (see dash-dot curve of g(?)) with
the corresponding response outbreak. To guarantee nonzero response during the short-term
instability a small zero-mean stationary broadband random process had been added to the RHS
of the Equation (1); one can see that the corresponding subcritical response is really very small.

Figure 2 illustrates the PDF pl4,, ] where solution (5), (6) for the case of Gaussian g(1) is

compared with result of direct Monte-Carlo simulation (where values of 4, were measured for
each upcrossing). The corresponding prediction of the PDF of the actual (nonscaled) response
amplitude and/or its peaks may be improved if PDF p (Aﬂ)of the random variable 4 is known.

Thus, assuming random variables .4, and ¢ to be independent one can write

p(4,)=[ p(4,/4) p(4) ddy.
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The Equation (4) is convenient for evaluating the system’s properties from its measured (on-
line!) intermittent response with outbreaks as one shown in Figure 1. To this end one can use

peak amplitudes 4, , as attained at instantsz, = 2¢/Au in the local time frames and
corresponding amplitudes A4; at inflexion points of the curve /n A(T). From the Equation (4)
4= A(z’i) = Ay expd, sothat A‘,,J/Aj =expd; alsody= Aiz/Ap )

Thus, for each one of the observed response outbreaks one can identify in a global time frame
the instants £, =1, +7 //1 and #; =t, +7; /A which correspond to peak and inflexion-point

amplitudes Ap and A; respectively; the instants of upcrossings can also be identified as
=ty —2(z‘f —tl-):21i —1y. The frequency A may now be obtained by averaging time
differencef , —;over all observed outbreaks of response. The identification procedure as
described in details in (Dimentberg & Naess 2006) relies upon averaging In(4,, / A)=expd

over all observed outbreaks. It provides on-line estimates both for the mean apparent damping
coefficient — which may be regarded as a nominal stability margin — and for standard deviation
and mean frequency of its random temporal variations.

e g
t{periods)

Figure 1: Response sample with “outbreak™ (solid line) of a SDOF system with apparent linear viscous
damping (0.16 — g(t)); sample of random process ¢(?) is shown by dash-dot line.

Figure 2: Theoretical PDF of scaled amplitude Ep =4,/ 4, and corresponding
histogram as obtained from sample of X(t)
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The described analytical solutions can be extended to certain TDOF systems with certain
“symmetry” which permit to “wrap up” two equations of motion into a single complex equation
(Dimentberg 1988, Dimentberg et al. 2008 ). Specifically, translational and tilting oscillations of
the Jeffcott rotor had been considered in (Dimentberg 1988) and (Dimentberg et al. 2008)

respectively. Thus, for the latter case equations of motion for rotating (tilting) angles gﬁ_r,g?f[v may

be written as
b, +2x0, + Q¢ + pvéy +2pvg, =0
§, +2xp, + ¢, — pv. -2 v =0

Herevis rotation speed whereas Q= K/J and p= Jp/.f where Jand J,are  mass

moments of inertia of the rotor about anyone of transverse axes and about rotation axis
respectively (K is shaft’s stiffness).
Furthermore, x=a+ f where @ =¢,/2J,f=c,/2J and ¢ ¢, are respectively coefficients of

n?
external, or “nonrotating” and internal or “rotating” linear viscous damping; the latter may
account for fluid flow in seals and/or journal bearings and thus may be subject to random
temporal variations. It should be noted that except for the “gyroscopic” term, i.e. one with polar
moment of inertia, the Equations (7) possess complete similarity with the equations of
translational lateral displacements x, y. Namely the latter may be written in the form (7) with
p=0and@_, ¢ replaced by x, y respectively, whereas the disk’s mass m should be substituted

)

for its moment of inertia J (and it goes without saying that relevant damping coefficients ¢ for
translational rather than tilting motions should be used).

Introducing complex rotation angle @ =@, +i¢y where i =J?1 one can replace two ODEs
(7) by an equivalent single equation
¢+ 2xp+ O p—ipv—2iBvp =0 where it is assumed that B(¢)=(B)+q(1) ()
Applying the KB-averaging to the Equation (8) yields approximate first-order ODE for
D= M = ¢f + ¢§ - amplitude of dominant forward-whirl component of the response.

Solution to this ODE is

O(7) =D, exp(yf(r)) where u :V(lfp/'z)/\lﬂz +(pV/2)2 = ®)

with the same f(z') as in Equation (3). (The solution (9) is valid only provided that x>0
otherwise upcrossing the instability threshold by ,B(r) wouldn’t be possible at all). In the

limiting case of diminishing gyroscopic effect o — 0 we have &2 =1/€)—1, and the Equation
(7) is reduced to similar solution for the rms radius of whirl in translational vibrations

R= \Ix?‘ +y2 . The solution (9) may be used to obtain the PDFs of peaks of (IJ(I) or R(t) in
terms of that of peaks of g(#); first-passage problems for response may also be reduced to those
for g(t).

In the general case of marginally unstable TDOF system, the equations of transient motion
during short-term instability cannot be reduced to a single state variable. Thus two coupled
response amplitudes remain after KB-averaging for the case of lightly damped system thereby
requiring numerical integration for the two ODEs of slow motion from starting point of the
response outbreak till the instant when both response variables pass their peaks. Then, as long as
relation is established (numerically) between peak value(s) of response(s) and that of scaled
zero-mean part g(t) of the bifurcation parameter the basic procedure can be applied for
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predicting response PDF. Several examples of such analysis as presented in (Dimentberg et al.
2008) are:
o Rotating shaft with anisotropy in support stiffness in translational vibrations;
e Two-dimensional galloping of a rigid body in a fluid flow (case of full 2x 2 damping
matrix);
e TDOF flutter of a tube row in heat exchanger subject to cross-flow of fluid.

3 NONLINEAR SDOF SYSTEMS

3.1 System with odd nonlinear restoring force: same procedure as for the linear case is applied
with the only adjustment being quasiconservative version of the KB-averaging.

X+2(a—q(r)) X +oU/ex =0 (10)

The potential energy function is assumed to be even with only two roots of the equation U(X)
= H for any given H. The PA is applied then and a first-order ODE is obtained for the function

S(4)= 4?[2U(A)—2u(X)]”2dX

where Uf4) = H and S(A4)=Q4” if U(X)z%QZXz .

This ODE is integrated starting from the instant of upcrossing ¢, until instant/ ; of peak of

X{v) for a given outbreak resulting in the explicit analytical solution for the response S(z) during
outbreak. Thus, complete extension of the previous results for peak response amplitude — the
Equations (3) and (4) — is obtained through calculation of the single-valued function S(4);
formulae for S(z) and S, certainly match formulae (3) and (4) respectively for the limiting linear

case U(X)==Q%X?.

1
2
3.2 Cubic nonlinearity in the damping term.
Equation of motion is now

X+2[a+pX—q() | X +Q°X =0 . (11)

For cases with @ <0and £ >0 this system without noise (i.e. with g(#)>0) has a limit

cycle, while for both & and £ positive such a limit cycle does not exist. Using standard KB-
averaging a first-order ODE for the amplitude A can be derived

3p
4

For the special case q(t)= const., the equation can be solved by separation of variables. This
can be exploited by approximating q(t) by a sequence of constant values g, within a (small)

A=—ad-"Z £ +q()4 (12)

time interval. Separation yields
dA _dA
(a+g)d-L g XA+

df =

A yA,D2 +x]

and7—¢, =lo
2 ! g[yAerx AOZ
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Here f, is the value of time at the beginning of the time interval, and A, = A(zo ) Based on this

representation, a numerical solution for the peak amplitude during an outbreak can be computed.
The following numerical results are based on the parameter values e =0.16, =2, A =0.1,

u=q and an initial amplitude A, =0.0001. The parameters ¢ and § are varied. Figure 3
shows the amplitude 4¢z) as a function of time on a logarithmic scale for a fixed value of
¢ =0.1 and different values of 5.

For comparison with the linear system, the functional relationship between ¢ and 4, is

given in terms of £ vs. log A4, which is a linear function for the case of linear damping. This

relation is shown in Figure 4 for selected values of f. Note that for the case of £ =0 there is a
perfectly linear relation.

zol H -
<l£ | —— f=1 /l//
_?2015' —=— 4100 /]‘ - o
- e | = e A Y
1 SO USRS, 7Sl WP W,
| | AT T T
L = RS R B -
T
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0 2.5 5 75 10 12.5

Figure 3: Logarithm of amplitude vs. non-dimensional time (C= 0.1)
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Figure 4: Maximum amplitude during outbreak depending on ¢ and §

4 CONCLUSIONS

Temporal random variations of parameters in dynamic systems with potential dynamic
instability may “smear” classical neutral stability boundary. The system’s response within such
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a “twilight zone” of marginal instability is found to be of an intermittent nature, with alternating
periods of zero (or almost zero) response and rare short outbreaks. As long as it may be
impractical to preclude completely such outbreaks for a designed system its response should be
analyzed to evaluate reliability; in particular, prediction of response PDF and solution to first-
passage problem may be of importance.

Results of such analyses are presented for the case of slow parameter variations using PA for
the variations together with averaging over the response period. Subsequent analytical or
numerical solution to deterministic problem for fransient response amplitude or its certain
special nonlinear function yields its PDF which may be important for predicting low-cycle
fatigue life; the first-passage problem for the response is also reduced to that for the bifurcation
parameter. The analysis is also used to derive on-line identification procedure for the system
from its observed response with set of rare outbreaks. Potential examples of applications include
1D and 2D short- galloping of elastically suspended rigid bodies in cross-flow of fluid with
random temporal variations of flow speed, bundles of heat exchanger tubes in cross-flow with
potential for flutter-type instability, and rotating shafts.
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ABSTRACT: The power plant tolling contract is one of most complicated derivative
instruments among energy derivatives. The buyer of the contract has the right (but not the
obligation) to run the plant to receive the generated power during the contractual period by
providing the fuel necessary to run the plant. The simplest way to view a tolling agreement is by
representing it as a spread option between power and fuel. Let X; = (P;, G;) be R¥-valued
driving process (R is the real axis), G; is the fuel process and the P, is (k — 1)-dimensional
power process. For a driving process X, we take a k-dimensional jump-diffusion {X,} whose
dynamic are given by a standard stochastic differential equation. Each power block peak, off-
peak, weekend peak, etc., is represented by a separate driving process. We propose an approach
based on stochastic impulse control framework. Our approach is to reduce the tolling contract
problem to simpler problems for which we have the existence and regularity results. Some
particular cases are considered in which solutions have explicit forms.

1 INTRODUCTION

A power plant tolling contract is one of most complicated derivative instruments among energy
derivatives. Tolling agreements are written on fossil fuel fired power plants. A fossil-fuel plant
converts a generating fuel into electricity at certain conversion rate known as heat rate.

In brief, heat rate measures the units of the fuel needed for producing one unit of electricity.
The lower is the heat rate, the more efficient is the power plant. The buyer of the contract has
the right to run the plant to receive the generated power during the contractual period by
providing the fuel necessary to run the plant. The simplest way to view a tolling agreement is by
representing it as a spread option between power and fuel. The spread between the electricity
price and the heat rate adjusted fuel cost is called spark spread.

Let X, = (P, G;) is R*-valued driving process (R is the real axis), G, is the fuel process and
the P, is (k — 1)-dimensional power process. Each power block peak, off-peak, weekend peak,
etc. is represented by a separate driving process. We assume duration of the contract is T years,
where the time interval [0, 7] is divided into finite number of subintervals. Let us assume that
for each block at moment t we have M states: 0, 1,2,..., M-1: the zeros = off, the first = C,,; - @
power plant run at minimal capacity; ...the last Cpy_; = Cax - @ power plant run at maximal
capacity. We can introduce also a control process y = y(t) which describes the plant scheduling
as a function of time. We should think of y as an F¥ - adapted piecewise-constant process. Let
I'(t) is the set of all allowed scheduling policies on the interval [#, T]. The operational flexibility
problem we investigate is reduced to finding the value function given by
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Supye[‘(z)E H(x’ir['t’T]; }/)IXt =X, }/(l’):f],

where [ stands for conditional expectation of H given X; =x, j/(t) =1, while H is the total
reward up to fixed final time T for such control ¥ . For a driving process X, we take a k-
dimensional jump-diffusion process whose dynamic are given by a stochastic differential
equation. We make the standard assumptions that (€2, F, P) is a fixed probability space on
which is defined a Wiener process W =(W,),.,., , W, =0 almost surely, whose natural
filtration is

Fy =W, s <tloqer-

Let F =(F)y.<r be the completed filtration of (F} )., with the P-null sets of F.
We consider the following Stochastic Differential Equation (SDE):

dX, = u(t, X,) dt+a(t, X,) dW,+J(t, X,) [dN, (1, X,) ), (L1)

where (N,),.., is a Poisson process with intensity A(z, X,), see [1]. Note that instead of a
Poisson process N, we can consider in (1.1) any semi-martingale. A jump-diffusion process is
composed of a diffusion component and a jump component. The diffusion part usually takes the
standard form u(r, X,) dt +o(t, X,) dW,, while the jump part is expressed by Poisson process.
Although many other processes can be used to represent discontinuous jumps, the Poisson
process is chosen more frequently.

As with deterministic ordinary and partial differential equations, it is important to know
whether a given SDE has a solution, and whether or not it is unique. The following is a typical
existence and uniqueness theorem for Ito- SDEs. Let x be a random variable with finite second
moment, and let ¢ and ¢ be measurable functions that satisfy the Lipschitz condition.

Moreover, X is independent of the o -algebra generated by W, s = 0. Then initial value
problem, i.e. SDE with initial condition X, =x, has a P-almost surely unique t-continuous
solution X, (@) such that X, is adapted to the filtration £ generated by X, and W, s <1,
see [2].

2 THE BASIC MODEL

We have the following three price blocks:

I) From 24:00 till 8:00 ;

IT) From 8:00 till 24:00 (Monday- Friday);

1) From 0:00 till 24:00 (Saturday and Sunday).

Let X, =(P,G)=(R(), B(), B(llll), G) be a stochastic R*valued driving process.
Therefore, if we lease a power station for the period of 5 years, t=1, 2, ... ,T(=2x5x365)=
3,650 (so-called a finite horizon), where each day is divided into two blocks. Let us assume that
for each block at moment t we have M =3 states: 0, 1, 2, ..., M-1. In General, if the capacity of
the power station varies between C_{min} and C_{max}, we divide this interval on the M-2
equal subintervals of length (Cppaxy — Cmin)/ (M — 2) and obtain the following M states:

The zeros = off,

The first = C

i - @ power plant run at minimal capacity;
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c -C._
The second = C;, +—>—=
M-2

Cone = Cui
Them-th=C =C +(m71)xH ,where m=1,2, ..., M-1.

The lastC,, , = C, . - a power plant run at maximal capacity.

We consider the payoff rate V(P (!),G,,i) in state i for block /. We have W(R(/),G,,0)=0

and

Y(BWD),G,i)=Cx[R()-v,xG ~K,]=

Coin +(m1)meLCm}< [B()-v,xG,-K,],
M-=2
where K, is the operating expenses for state i, v; is the heat rate for the state i=1,.., M-1, P(D
is the price of electricity in block 1, and C, is the capacity of the power plant for state i, the
possible values of C, is
C,=C,. + Conx ~Coy = €=
M-2

It is obvious that the heat rate is monotone increasing as a function depending on capacity, that
js 0=y <oy g

The expression P (/)—v,xG, —K, is the profit of 1 Meg./hour for state i and block /. The
operating state m can affect the dynamics of X, through price impact. We make the
simplifying assumption that this effect can be described as changing some parameters of the
equation (1.1). Changing an output level is costly, requiring extra fuel and various overhead
costs. We have to consider the switching costs from state i to state j:

aij(t5X1)5 a; = 0
with potential dependence on time and current state, we have the following switching costs:

i,j=012..,M-1.

Qs
Cost of startup is
Gy =y, = Gy pg = ST,

and all remaining @, ; are nonnegative. Moreover, it is obvious that @, ; satisfies the triangle
inequality a,; <a;, +a,; forany i, j and k states.

We can introduce also a control process ¥ = #(¢) which describes the plant scheduling as a
function of time. The control y(#) is dynamically chosen and adapted to the information
filtration

F* = the minimal o -sigma algebra containing {X,: 0 <s <7}
‘ g1,

Because the management decisions are obviously discrete, we can represent the control function
as
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}’=((§1: Tl)’ (52: Tz)a""(§7‘= T?‘))s

where &, taking on the values from the M-element set {Off, C__,..., C,,, }of all possible
states, and

<=8 8527

are the (F, “ -stopping) switching times (i.e. the time moments at which we change the state).
We should think of » as an F,X -adapted piecewise-constant process, where

=2 & I, .. O

<l
denotes the operating state at t.

The total reward up to fixed final time T for such control } and scenario @ € £2 (the outcome)
is then

H(x,i[0,7T; 7)@) = [ (X, #)ds = ay, o100y

T <T

where X, =x and y(0)=1/.
The first term in the right hand side describes the cumulative profit corresponding to } and
the second term counts the associated switching costs at each switching time 7, . Note that

P, y(s) =¥ (RO, G, ),

if y(s)=1i and s belongs to the / price block.
Let T°(¢) is the set of all allowed scheduling policies on the interval [t, T]. The operational
flexibility problem we investigate may now be stated as finding the value function

J(t,x,0)= SUP, .y S (X, 55 ),

where
Ji 0 yy=E Hind [6T): DX, =3, A/t =i

Here E stands for expectation (in this formula, conditional expectation of H given
X, =x, y(¢) =i)) with respect to a risk-neutral measure P . Maybe we can consider a discrete
process, if we assume that the derived process in the corresponding intervals [z,,7,,,] are
constant, i.e. the set of changing the gas price G, is a subset of stopping moments (or the

moments of changing the states).
A basic price to the operational flexibility associated with the plant by definition is

.
J(@,x,i))—max, _ ,, It X, i) E l;[ WX, y(s)ds/ X, = x}

which is the difference between expected profit with the flexibility built-in and expected profit
in the best, but fixed, operating state m.

234




3 PARTICULAR CASES

I} A Geometric Brownian Motion or Generalized Wiener Process is a continuous-time
stochastic process in which the logarithm of the randomly varying quantity follows a Brownian
motion.

This example we obtain from (1.1) if we assume that J(¢, X,)=0, u(?, X )=p-X,, and
a(t,X,)=0c-X,, for certain constants g >0and O called respectively the drift and volatility
of the stock. In other words,

ﬂ:u-dt‘+c)'-cﬂfl‘{,
X!

X =%,
where X, is the starting price. Using Ito's formula, we obtain
X (@) =x,exp{oW, +(u-c* /2)-1}

i.e. X, has alog-normal distribution.

The first time the authors of [5] have considered this particular case of SDE using stochastic
control for tolling agreements.
1) The second particular case is the mean-reverting model which we obtain if we assume that
there is not the Poisson component of the SDE equation, and u(X,)=c (u—In X)X, ,
o(X,)=0-X,, where @ is the mean reverting intensity.

Defining S, =In.X, and applying Ito's lemma, the natural logarithm of the X, can be

r
characterized by an Ornstein-Uhlenbeck stochastic process:

ds, =a(m-38,)dt +odW,

where m=pu—o’ /(2c).
Integrating the previous equation and using fundamental results from stochastic calculus, we
get that the conditional distribution of S, is normal. For this type of SDE see, for example, [6].

1) Jump-diffusion processes are capable of modeling sudden discontinuous in the price
evolution, but once the jumps occur and the prices move to a new level, the price tends to stay in
that level until a new jump arrives. The corresponding model is called mean-reversion jump
diffusion model (see [7]). We substitute in (1.1) g(X)=a-(u—-x-InX,)X,
o(X,)=0c-X,, J(t,X,)=1, « is the market price of risk and J(#,X,)=A is a constant.
Defining S, =InX, and applying Ito's lemma, the natural logarithm of the X, can be
characterized by the following SDE:

dS, =a(m—k—S8)dt+ocdW,+ f dN,,

where m=u—o” [(2a), while 8, =In(1+k ), and k, =k(t,®) is the jump amplitude. The
jump amplitude is the double stochastic parameter. In this model we have 6 parameters if we
consider risk-neutral model. The inclusion of jumps into models leads to the loss of the simple

analytical solutions.

IV) Much of the existing finance literature is based on jump-diffusion models, and exploits the
connections between such models and partial differential equations (see for example [3]). For M
= 2 there exists an explicit regular solution of the switching problem (see [3] and [4]).
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An alternative linear response surface method for stochastic
dynamic analysis
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ABSTRACT: An alternative Linear Response Surface strategy is presented for the evaluation of
the response statistics of dynamic systems subjected to stochastic excitation. At first the geome-
try of very high-dimensional reliability spaces is discussed, where it is shown that the sample
points fall far away from the origin of the standard normal space, in a very narrow region of
probabilistic interest. It is also seen because FORM may work well for applications of Stochas-
tic Dynamic Analysis in high-dimensional spaces. However, it does not give any information
about the obtained level of accuracy and moreover in some cases its approximation is not very
close to the exact one. To this aim, in this paper we introduce a novel Linear Response Surface
based on the Support Vector Method, which allows to overcome the shortcomings of FORM,
starting from the knowledge of the design point direction.

1 INTRODUCTION

The aim of the stochastic dynamic analysis is the evaluation of the response of dynamic systems
subjected to stochastic input. If the stochastic excitation follows a Gaussian distribution and the
dynamic system is non linear, the response is Non-Gaussian and it is very difficult to be eva-
luated.

In the past decades, a lot of methods have been proposed to this aim, usually they are howev-
er hardly applicable to general nonlinear systems, and so they are difficult to apply in practice.
These drawbacks are not shared by the Equivalent Linearization Method, but unfortunately it
gives accurate results for weakly non-linear systems only (Roberts & Spanos 1991, Lutes &
Sarkani 2004); moreover, it generally cannot approximate adequately the distribution probabili-
ty of the response, especially in the tail region. Therefore some response statistics as crossing
rates and first passage probability will be inaccurate at high thresholds.

The most robust procedure is given by the Monte Carlo Simulation (MCS), which is however
strongly demanding in its crude form. For this reason, recently some smart simulation tech-
niques have been proposed, among the other we recall the subset simulation (Au & Beck 2001),
line sampling (Pradlwarter et al. 2007), asymptotic sampling (Bucher 2009).

Promising results are given from the application to the nonlinear stochastic dynamic analysis
of the analytical methods of structural reliability, particularly the First-Order Reliability Method
(FORM) (Der Kiureghian & Li 1996, Der Kiureghian 2000). At first, the stochastic input is dis-
cretized into a large number of standard normal random variables. The tail probability is defined
as the probability that the response of the dynamic system is greater than a chosen treshold x at
fixed time instant z. In this way, for given x and ¢ the dynamic problem may be solved by using
the tools of the structural reliability theory. In particular, it is seen that the design point corres-
ponds to the realization of the stochastic input that gives rise to the tail exceedance event, and
therefore it defines a critical excitation for the system. Moreover it allows the application of the
recently developed Tail Equivalent Linearization Method (Fujimura & Der Kiureghian 2007,
Der Kiureghian & Fujimura 2009, Garré & Der Kiureghian 2010). Finally, it gives the FORM
solution, which has been shown to give good approximations of the tail probability in many
cases of practical interest (Koo & Der Kiureghian 2005, Alibrandi & Der Kiureghian 2010,
2012, Alibrandi submitted).

In this paper at first it is seen because FORM may work well in very high-dimensional relia-
bility problems, as the one here analyzed. This task is accomplished through a close insight to
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the geometry of the very high-dimensional spaces. Indeed, it is seen that the samples drawn
from a multivariate normal standard distribution fall over a »—dimensional sphere, and therefore
the knowledge of its geometry is a very important topic. In particular, it is seen that the samples
fall far away from the origin of the standard normal space, more exactly in a very narrow region
= = E,U=, given as the intersection between: (i) a very thin shell =, whose average radius is
proportional to the square root of the number of variables, and (ii) an equatorial slab Z; (con-
taining the origin of the space) whose orientation and width depend on the particular Limit State
Surface (LSS). The first region Z; allows to state that a Linear Response Surface can give very
good approximations of the target LSS, while the second region Z, allows to state that this
hyperplane is close to the origin of the space; note that both the properties are owned by FORM.

However, FORM has some known computational complexities and shortcomings: (i) the
evaluation of the design point in high-dimensional spaces may require a great computational ef-
fort, (7)) FORM in some cases is not able to obtain a very good approximation of the target LSS,
(ii1) FORM does not give any information about the level of accuracy obtained. The first draw-
back can be solved by using a DDM-enabled software, like OpenSees (Mckenna et al. 2003), or
adopting a recently proposed Response Surface strategy (Alibrandi & Der Kiureghian 2010,
2012, Alibrandi submitted), and based on the Model Correction Factor Method (Ditlevsen &
Arnbjerg-Nielsen 1994, Ditlevsen & Madsen 1999).

To overcome the remaining shortcomings of FORM in this paper we present an alternative
Linear Response Surface method, based on the Support Vector Method (SVM), and that fully
takes account of the geometry of the high-dimensional spaces.

The paper is organized as follows: in section 2 the geometry of #—dimensional spheres is pre-
sented, together with discussions about the FORM solution in this kind of spaces, in section 3
and 4 we present the nonlinear stochastic dynamic problem by using the FORM solution and its
improvement through the proposed approach, respectively, and finally in section 5 the method is

applied to a simple hysteretic system.
2 FORM IN HIGH-DIMENSIONAL SPACES

In structural reliability analysis the space of the basic variables x may be subdivided into two
distinct domains, the safe set €), and the failure set ), which are separated by the Limit State
Surface (LSS).

Let g(x) the Limit State Function (LSF) so that the safe set and the failure set are defined as
Q. ={x: g(x)>0} and O, ={x: g(x)<0}, respectively. Under these hypotheses and after the
probabilistic transformation toward the standard normal space u, the failure probability with re-
spect to the chosen limit state is

P= j Sy (u)du (1)

g(u)<0

where (y={u: g(u)<0} is the failure set in the standard space and fi{u) is the multivariate nor-
mal standard probability density function. The evaluation of the failure probability P, according
to (1) requires the computation of a usually complicated multidimensional integral, whose value
depends upon the failure set. Consequently, a satisfactory approximation of (1) necessarily im-
plies a good modeling of the LSS g(u)=0.

Recall that the design point #” is the point belonging to the limit state closest to the origin of
the standard normal space while its distance from the origin is the reliability index f=tu +

It is well known that in low-dimensional spaces, most of samples generated by fi(u) fall
around the design point. This property is not held in high-dimensional spaces, however in both
low— and high—dimensional spaces the design point usually gives an important direction for the
evaluation of Py except for particular systems, whose behavior is chaotic.

By using the FORM solution, a linearization of the LSS around the design point is done, and
the first-order approximation of the failure probability is P; rory = ®(—B), where P(e) is the
cumulative distribution function of the standard normal random variable.

In high-dimensional spaces the samples fall far away from the design point, however FORM
usually works well, as we show below. In the following, we will describe the geometry of the
n—dimensional sphere, since the samples drawn from f;(x) belong to it.
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2.1 The high-dimensional sphere

Let us consider an »—dimensional ball B,(R) of radius R and centered at the origin of the space,
whose equation is Y u”< R* It is the generalization of the 3~dimensional sphere to higher di-
mensions, so that for » = 2 and » = 3 we have the circle and the sphere, respectively. The sur-
face of the ball, known in mathematical literature as hypersphere S,(R) and of equation 2 u,z =
R?, has dimension n—1; for clarity’s sake, for n = 2 and n = 3 we have the circumference and the
circle, respectively.

The geometry of n—dimensional spheres has some very counterintuitive issues; in the follow-
ing we will underline the most significant ones, with respect to the implications that they have
in the context of the high dimensional reliability analysis.

Property 1: An n—dimensional sphere has non-zero volume if R > constant x Jn

The volume of the n—dimensional ball B,(R) and sphere S,(R) are identical, since the volume
measures the total “content” of the object, including all the internal space. The volume of the
1—, 2— and 3—dimensional sphete is VoI[S,(R)] = 2nR, Vol[S{R)] = nR* and VoI[Si(R)] =
(4/3)nR?; a generalization of these relationships to higher dimensions gives VoI[S,(R)] = K.R",
where K, is a constant depending on the dimensionality », defined as

K, =Vol[ 8, (1)]= r(’:—z} s( %} @)

—41 4
2

being /{*) the Gamma function and where the last relationship holds for n—. As particular
cases, for n = 2 and n =3 we obtain K = 7 and K5 = (4/3)n, as expected. Noting from (2) that
K,=VolI[5,(1)] and that K,—0 as » tends to infinity it can be stated that the unit hypersphere has
zero volume in high dimensions. Moreover, from (2) it is easy to find that the radius of the
hypersphere of unit volume is Rypo-yy = 0.242 \/; It is also possible to show that for » great,
the hypersphere has non-zero volume only if R > Ryy-y), Which is proportional to the square
root of », according to the constant 1/+/2ze .

Property 2: Vast majority of the volume lies near the equaior

The “Pole North” is an arbitrarily chosen vector on the hypersphere, while the “equator” is the
intersection of the hypersphere with the hyperplane perpendicular to the Pole North. It is seen
that the volume of the n—dimensional sphere accumulates near the equator. Chosen a vector as a
Pole North, assume that the equatorial plan has equation x, = 0. Consider the equatorial slab
bounded by the hyperplanes x, = — 3 and x, = {3, so that it is defined as Slab(x,, fp)={x € R": -
Bo < x, < Bo}- It is possible to show that for n—oo the fraction of volume of S,(R) contained in
Slab(x,, ) is equal to

B A 3
Vol[ Stab(x,.5,)] 1 | 5 ©)
—f

vol[s,(R)] ~ \or

Note that while the radius of the sphere grows as \/; , the width of the slab is constant. There-
fore, in high dimensions all the volume is concentrated around an equatorial slab which
represents a little region with respect to the sphere. It here also underlined that we have chosen
arbitrarily the Pole North, identified by the axis x,.

Property 3:¥ast majority of the volume lies around a very thin shell near the boundary
Let us now consider the volume VoI[S,(R, £)] of a thin shell of width & along the surface of an
hypersphere of radius R. It is given as the difference between the volumes of the »—dimensional

spheres of radius R and R — ¢, that is Fol[S.(R, €)] = Vol[S.(R)] — Voi[S.(R — ¢€)]. To show the
phenomenon of the volume concentration near the boundary, consider the ratio
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_Vol[S,(R-¢)] K, (R-¢) (. eY 4
= vol[S,(R)] KR *[lfﬁJ

for every 0 < & < R, this ratio tends to zero as n— o, which means that the center is essentially
void, and that every spherical shell, no matter how thin, will contain essentially the whole vo-
lume Vol[S(R)].

Consider now the ratio of the volume of the thin shell Fol/[S,(R, €)] to the whole volume of
the outer sphere Vol[S,(R)], which gives v, = Fol[S.(R, €)|/Vol[S,(R)] = 1 — A,. Clearly, y,—1
when n—»oo, which means that for high-dimensional spheres almost all the volume lies around a
thin shell near the boundary.

Summarizing we have seen that: (/) in high dimensions the sphere of non-zero volume has a
radius R proportional to Jn; (if) chosen arbitrarily a Pole North, almost all the volume concen-
trates around an equatorial slab Z,=Slab(x,, ), whose width does not depend upon »; (iii) the
n—dimensional sphere at the center is void, and almost all the volume concentrates around a
very thin shell Z,=5,(R, £) near the boundary. As a consequence the samples fall over the region
=2 = E|UE; as depicted in Figure 1a.

2.2 Reliability Analysis in very high dimensional spaces

Until now, we have discussed about the n—dimensional sphere, which is symmetrical around the
origin, so that each axis can be considered as a North Pole. However, in the framework of Struc-
tural Reliability Analysis, we introduce a LSS, and the symmetry of the sphere is lost. In this
case, the region of probabilistic interest is close to the intersection between the region = and the
LSS g(u)=0.

Taking account of the statements described above, two important considerations can be made:
(i) since the samples belong to the very thin shell, the LSS can be well approximated by an
hyperplane; (i) the North Pole is not fully arbitrary, but it must represent an “important direc-
tion”, whose choice is a crucial step. Indeed, we must consider only the samples belonging to
the equatorial slab containing the LSS. If the important direction is well chosen, the region of
probabilistic interest, can be given by a very narrow equatorial slab. Clearly, the simplest and
effective choice for the important direction is represented by the “design point direction™ and
the orientation of the equatorial slab is given by the FORM solution. Therefore, although in very
high-dimensional spaces the samples fall far away from the design point, the FORM is likely to
give very good approximations of the failure probability in all the cases where the “design point
direction” is really an “important direction” and where the departure of the LSS from the FORM
solution is weak in the region of probabilistic interest as above defined.

Figure 1. (a) n—dimensional sphere, (b) FORM in very high-dimensional spaces
3 FORM FOR STOCHASTIC DYNAMIC ANALYSIS

The FORM approach requires the preliminary discretization of the stochastic input into a set of
standard normal random variables. Several formulations for this purpose are available, see Der
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Kiureghian (Der Kiureghian 2000) for a brief review. For a zero-mean, Gaussian excitation
process, all representations have the form F(z, u) = Z s(f) u; = s()u, i = 1,2,...,n, where n is a
measure of the resolution of the discretization, #={u,, us, ..., t,} is an n—vector of standard
normal random variables, s(f)={s,(f), s2(?), ..., S4(£)}  is an n—vector of deterministic shape func-
tions dependent on the covariance function of the process.

Consider the response of a dynamical system to the excitation F(7, #) . Owing to the random
variables u, the response is stochastic and we denote it as X{(#, u). For a specified threshold x and
time ¢, we define the tail probability as P;= Prob[X(¢, &) > x]. To apply the tools of the structural
reliability theory, we define the Limit State Function (LSF) g(x, ¢, u) = x — X{¢, u), so that the
failure probability with respect to the limit state Py = Prob[g(x, ¢, #) < 0] is equal to the tail prob-
ability.

Thz problem of stochastic dynamic analysis in the time-domain is a typical case of Reliability
Analysis in high-dimensional spaces, since # usually is greater than 400-500. Numerical expe-
rimentation has shown that in many cases of practical interest FORM gives good approximation
of the tail probability; these results can be well explained in view of the considerations pre-
sented in section 2.2,

However FORM has some known drawbacks: (7) the evaluation of the design point is usually
a quite complicated task in very high dimensional spaces, (i/) FORM gives only an approxima-
tion, and we don’t have any information about the obtained level of accuracy.

The first shortcoming can be overcome through the adoption of suitable Response Surface
Methods based on the Model Correction Factor Method (MCFM), recently proposed. The most
important drawback is the second one, and it can be overcome by introducing a suitable Linear
Response Surface Method based on the Support Vector Method (SVM) and that will be de-
scribed in the next section.

4 THE PROPOSED LINEAR RESPONSE SURFACE

The basic idea of the Response Surface Methodology (Faravelli 1989, Bucher & Burgound
1990) is the approximation of the target Limit State Function (LSF) g(x, 1, #), usually compli-
cated and implicit, with an approximate model y.pp=g.pp(#), called Response Surface (RS). Once
the RS is buil, it is no longer necessary to run demanding nonlinear dynamic computations, but
we can use the surrogate model. Clearly, because the RS works well, it is necessary that it ap-
proximates well the Limit State Surface (LSS) g(x, ¢, u) = 0.

To this aim, we can consider the Reliability problem as a Classification Approach (Hurtado
& Alvarez 2003), according to which we are not interested to the value y = g(x, ¢, &) of the LSF,
but to its sign z = sign[g(x, ¢, #)], so that the points &; belonging to the safe region have the value
z;= +1, and the points &; belonging to the failure region have the value z=-1. It is easy to see
that the building of a surrogate model y,p=gapp(u) such that it satisfies only the sign constraints z
= sign[g(x, ¢, u)], is equivalent to the building of a RS which directly models the LSS.

A powerful classification approach when applied to Structural Reliability problems is given
by the Support Vector Method (SVM), which will be described in the next subsection.

4.1 A Linear Response Surface based on the Support Vector Method

Let be known a set of m sampling points u,,us,...,%,, While y1,y,,...,Vn and z;,2,...,2, be the
corresponding values of the LSF yi= g(x, ¢, u;) and signs z; = sign[g(x, f, u;)], respectively.

Suppose that the target LSS is linear, g(x, ¢, )=x-a-u, then the sampling points #; are linearly
separable. Consider the approximated LSS g, (u)=b—w-u, where w determines the orientation
of the plane, while the scalar b determines the offset of the plane from the origin. Clearly, when
the number of samples converges toward infinity m—oo, then the linear classification function
becomes coinciding with the target LSS, i.e. w—a, b—x. Conversely, for a limited number of
points, there are infinite possible planes that classify the points correctly. Intuitively, a hyper-
plane that passes too close to the sampling points will be less likely to generalize well for the
unseen data, while it seems reasonable to expect that a hyperplane that is farthest from all points
will have better generalization capabilities. Given a set of m sampling points, the margin is de-
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fined as the minimum distance between points belonging to different classes. Therefore, the op-
timal separating hyperplane is the one maximizing the margin.

Recall from the elementary geometry that the distance §; of a point #; from the hyperplane
Zapp(#)=0 reads as 8=|b—w-ui|/tw+; noticing that g,,,(#)=b—w-u=0 is invariant under a positive
rescaling, we choose the solution for which the function y.p,=gupp(#) becomes one for the points
closest to the boundary, ie. |[b-wuf=1. This couple of hyperplanes gups(#)=b-—w-u=1,
Vueg(u)>0 and g, (u)=b—wu=—1, Vueg(u)<0, are called canonical hyperplanes (or support
hyperplanes). The distance from the closest point to the boundary is p=1/+w+, and the margin
becomes M=2/+w+, as shown in Figure 2.

Maximizing the margin is equivalent to minimize +w+%/2, giving rise to the following Qua-
dratic Programming (QP) problem

.1, e
-y 5””’“ (5)

w.b

st z,(b—w-uj)zl i=1,2K,m

where the inequality constraints are equivalent to b—ww:>1, Vueg(u)>0, and b—wu<-1,
Vu;eg(u)<0. It is here noted that (5) is a standard convex optimization problem, so the unique-
ness of the solution is guaranteed and moreover there are many robust algorithms that can effec-

tively solve it.

Figure 2. (a) Linear SVM, (b) LSVM Response Surface

In Figure 2a we represented with filled markers the support vectors, which are the points ly-
ing on the support hyperplanes b—w-#=+1. They only contribute to defining the optimal hyper-
plane, so that the complete sampling set could be replaced by only the support vectors, and the
separating hyperplane would be the same.

Suppose now that the LSS is non-linear, so that it is not possible to identify an hyperplane,
which can classify correctly all the sampling points. To this aim, we relax the constraints of (5)
by introducing the slack variables £20 giving rise to b—wwu21-t;, Vueg(u;)>0, and
b—w-a;<—1+E;, Vueg(n;)<0. The variables &; give a measure of the departure from the condition
of correct classification, more in particular when O< &; < 1 the point is not well classified but it
falls inside the margin, while when & > 1 the point is not well classified and it falls outside the
margin; finally, clearly, if & = 0 the point is correctly classified. Under this hypothesis, the op-
timal separating hyperplane is the one having the maximum margin with the minimum classifi-
cation error.

In Figure 2b we represented the nonlinear LSS and its approximation by using the Linear
SVM-based (LSVM) Response Surface. It is noted that the reliability index of the LSVM is
simply given as Sisym=b/tw:, while the support hyperplanes have the reliability indices
Srswmis=(b—1)/+w+ and fisymue=(b+1)/twe
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4.2 Qutline of the proposed approach

In each Response Surface method a crucial issue is represented by the sampling plan. The first
step is finding an “important direction”. This can be the design point direction, or its approxima-
tion obtained by using the MCFM-based response surfaces, as described in section 2.2; in this
way we are choosing the North Pole, and consequently the orientation of the equatorial slice. To
determine the width of the equatorial slab, we define a set of points &, £=1,2,...,m, along the
design point direction, whose mutual distance is p, and evaluate their LSF y= g(x, 1, ). The
application of the LSVM to this set of points gives the first model, represented by the LSVM
and its support hyperplanes, which define a first equatorial slab; note that the procedure does not
use any information except the chosen important direction. This first model gives an approxima-
tion of the tail probability Prrsym=®(—Frsvim), together with its flexible lower and upper bounds
Pt 1sva =P~ Frsvmur) and Prisvaun=P(—fFisvwm 1s), Tespectively.

After that, an iterative procedure is developed such that: (/) generate a set of random points,
(i) evaluate the LSF only of the points belonging to equatorial slab, (ii7) calculate a new LSVM,
whose updated equatorial slab is likely to have a less width. The procedure stops when the equa-
torial slab is so thin that the flexible bounds are considered acceptable.

The proposed approach has several attractive properties: (i) it gives very good approxima-
tions of the tail probability, almost coinciding with the exact solutions, when an enough number
of sample points is chosen; (if) if a reduced number of points is chosen, it gives informations
about the level of accuracy obtained, (ifi) its convergence is not affected by the presence of mul-
tiple design points, (iv) it works well even if the LSF is not smooth.

5 NUMERICAL EXAMPLE

Consider a Bouc-Wen hysteretic oscillator defined by the differential equations
X +20,0,X +0?[oX +(1-a)Z] = F()
Z=-0|X|2[" Z 2| X+ ax

where ©,=8.36 rad/sec and {y=3% are natural frequency and the damping ratio, respectively, o
controls the degree of hysteresis, and r, A, & and y are parameters defining the shape of the hys-
teresis loop. The excitation is defined as F(t) = —mag(f), where ag(g) denotes the base accelera-
tion modeled as a white-noise process of intensity §=0.0117 m ’/sec’. We select 0.=0.5, r=3, A=1
and d=y=1/(2a,"), wherein cy=m"nS/(ck) is the mean-square response of the linear system, ob-
tained setting c=1. The time step A7=0.02 sec is used and the response at time 7=10 sec is con-
sidered; consequently, for the case under exam, we have »=500 random variables.

The result is calculated for normalized threshold values x/o, from 0.5 to 3 with increments of
0.5. At first a close approximation of the design point direction has been evaluated, by using the
MCFM-based response surface (Alibrandi, submitted). Then, we considered along this direc-
tion a preliminary set of 51 points whose mutual distance is p = 0.1; we applied the LSVM and
we found a solution very close to FORM, as shown in Figure 3a.

Tail Probability
Tail Probability
2

MCS
=+ FORM

LSVM

1 == LSVMALB
! 5 - 7 . . | o TTTTTLSVMALB
0 0.5 1 15 2 25 3 s 05 1 15 2 25
xlag xlog

Figure 3. Tail Probability of the Bouc-Wen example (a) first model () after 20 iterations
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Note that the LSVM adopts only the points on the important direction, so in principle it could
be quite different from FORM. Moreover, the procedure allows to detect the confidence limits
of the approximation. Then we have applied the iterative procedure described in section 4.2, and
it is seen that after evaluating m = 2,000 points (20 iterations of 100 points each one), the
LSVM gives an excellent agreement with the MCS with 100,000 samples; moreover the flexible
bounds are clearly much more tight, as shown in Figure 3b.

6 CONCLUDING REMARKS

In this paper we have adopted a novel response surface strategy for nonlinear stochastic dy-
namic analysis. At first, through the analysis of the geometry of very high-dimensional spaces,
we have shown that FORM may work well in many cases of practical interest. Then, we have
introduced a Linear Response Surface based on the Support Vector Method that starting from
the design point direction, allows to obtain an improved approximation, keeping knowledge of
the achieved level of accuracy, through the introduction of suitable lower and upper bounds re-
lated to the support hyperplanes of SVM. Further research will be devoted to the analysis of
MDOF systems with different degree and kind of nonlinearities.
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ABSTRACT: Reliability problems involving large numbers of random variables pose special
difficulties in various computational reliability methods — the so-called “curse of dimensionali-
ty.” We investigate the high-dimension reliability problem in the context of the first-order re-
liability method (FORM) for the particular class of nonlinear stochastic dynamic problems. Pre-
vious researchers have claimed that FORM is not appropriate for this class of problems because
of the curse of dimensionality. We show that the accuracy of FORM depends more on the na-
ture of the nonlinear system, which can be assessed by physical considerations before solving
the reliability problem, than on the dimension of the problem. Furthermore, it is shown that even
for problematic cases useful results can be obtained for reliability problems of practical interest.
It is also shown that the accuracy of FORM does not deteriorate when the dimension of the
problem increases due to the use of a finer discretization of the input stochastic process.

1 INTRODUCTION

The first-order reliability method (FORM) is well established as an approximate method of
analysis for structural reliability problems defined in terms of a well behaved limit-state func-
tion. The accuracy of the approximation lies in the fact that the first-order approximation (linea-
rization) of the limit-state function is performed at a point in a transformed standard normal
space, where the probability density is maximal among all points within the failure domain.
Based on this, it has been argued that the neighborhood of this point, commonly known as the
design point, provides the dominant contribution to the failure probability integral (Ditlevsen &
Madsen 1996), thereby explaining the reason for the effectiveness of the first-order approxima-
tion.

Due to its success in solving ordinary structural reliability problems, in recent years FORM
has been used to solve more challenging problems involving random processes or fields. Since
FORM requires a formulation in terms of random variables, these types of problems require that
input random processes or fields be discretized and represented in terms of a finite set of random
variables. Depending on the fineness of the discretization, the number of random variables of
the problem can be large, i.e., in hundreds or thousands. It has been argued that in such cases the
neighborhood of the design point does not necessarily provide the dominant contribution to the
probability integral (Katafygiotis & Zuev 2008, Valdebenito et al. 2010). In fact, in high dimen-
sions, even though the design point remains the most likely (maximal probability density) point
in the failure domain, its neighborhood may make negligible contribution to the failure probabil-
ity. This is because in high dimensions the incremental volume increases exponentially with dis-
tance from the origin so that failure regions far from the origin in the standard normal space may
contain the bulk of the probability, even though the probability density there is small.

In this paper we investigate FORM solution of nonlinear stochastic dynamic problems in-
volving large number of random variables (exceeding one thousand). We show that the accuracy
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of FORM strongly depends on the physical characteristics of the system in a manner that is pre-
dictable by the knowledgeable user. We also show that even for problematic cases, useful ap-
proximations can be obtained by FORM for some important reliability measures. Furthermore,
we show that the degree of fineness of the resolution has little influence on the FORM estimate,
even when the number of random variables is doubled or quadrupled.

2 FORM SOLUTION OF STOCHASTIC DYNAMIC PROBLEMS

Consider the response X (¢) of a nonlinear system to a zero-mean Gaussian excitation, which is

. . . _ N .
represented in the discretized form F(t) = /1, 5;(t)u;, where u; are a set of independent stan-
dard normal random variables and s;(t) are a set of basis functions characterizing the correla-
tion structure of the process (Der Kiureghian 2000). The stochasticity in the response is due to
the random variables u = (uy, ..., uy) and we indicate this by writing the response as X (¢, u).
To determine the tail probability Pr[ x, < X(t,u)] at a selected time ¢, we solve the reliability
problem defined by the limit-state function

G(t,u) = x, — X(t,u) (1)

The FORM solution of this problem requires finding the design point u* = arg min{||ul|
|G(t,u) = 0} and linearizing the limit-state function at u*, i.e., employing the approximation
G(t,u) = xp — VuX(¢6, u”)(u — u™), where V,X(¢,u) is the response gradient. The FORM ap-
proximation of the probability of interest is then given as Pr[x, < X(t,u)] = ®[—B(x, t)],
where f#(xy, t) = ||[u”|| denotes the reliability index. For a linear system, one can show (Fujimu-
ra & Der Kiureghian 2007) that X(t,u) is a linear function of u and, therefore, the above ap-
proximation is indeed exact. For a nonlinear system, the accuracy of the approximation clearly
depends on the degree of nonlinearity of the system. In view of the high-dimension problem de-
scribed above, the question arises whether the accuracy of the FORM approximation also de-
pends on the fineness of the discretization employed, i.e., on the number of random variables, N
used to discretize the input excitation. We investigate these issues by way of two example sys-
tems in the following section.

The above problem characterizes the reliability of the system at a point in time. In practice,
one is more interested in the reliability of the system over an interval of time, i.e., the probability
Pr[xy < max;er X(t,u)] for some selected time interval T. As described in Fujimura & Der
Kiureghian (2007), this problem can be solved as a series system reliability problem

Pr{xp < max,er X(t,u)] = Pr[UtieT{xﬂ < X(t;, U)}] (2

in which t; are a set of closely spaced time points within the interval of interest. It can be seen
that the “components” of the series system are the point-in-time reliability problems defined in
Eq. 1. Hence, the tail-probability problem in Eq. 1 is a fundamental problem for solving other
reliability measures of interest in stochastic dynamic analysis. As shown in Fujimura & Der Ki-
ureghian (2007), FORM solution of the above problem is given in terms of the multinormal
probability function involving the design points of the individual point-in-time problems.

3 INVESTIGATION OF NONLINEAR SYSTEMS

We consider two nonlinear systems: an elastic Duffing oscillator and an inelastic oscillator fol-
lowing the Bouc-Wen hysteretic law (Wen 1976). In order to gain insight into the behavior of
each system, we examine the projections of the failure domain in two-dimensional subspaces in
the standard normal space. To simplify the problem, we consider the input excitation as a white-
noise process discretized in time domain. This is characterized by a sequence of time points
t; =ix At, i =0,1,...,N, where At is a small time increment, and the basis functions s; tj) =
ad;;, where §;; is the Kronecker delta and o = /2mS,/A¢, in which S is the intensity of the
white noise.
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3.1 Duffing Osciilator
The Duffing oscillator is defined by the differential equation
mX () + cX() + k[X(®) + yX3(©)] = F(t) (3)

We consider parameter values originally considered by Koo et al. (2005) and also used by Kata-
fygiotis & Zuev (2008): mass m = 1000 kg, damping ¢ = 200m Ns/m, stiffness &k =
1000(2m)? N/m, and nonlinearity coefficient ¥ = 1 m™2. The intensity of the discretized input
white noise is set to S, = 10 N°s/rad. We consider the time instant t = 12s and the threshold
Xy = 30y, where 0 = nS,/(ck) represents the stationary mean-square response of the linear
oscillator, i.e., for the case with ¥ = 0. Koo et al. (2005) have shown that the response of the
Duffing oscillator is effectively stationary by the time t = 12s. We consider the time step
At = 0.01s so that the number of random variables used in discretizing the input process is
N =1+t/At =1201.
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Figure 1: (a) Failure domain in the plane of #(u", u,") for the instantaneous failure at ¢ = 12s; (b)
Duffing oscillator response at # = 12s along the design point direction

Katafygiotis & Zuev (2008) considered visualization of the above problem in the two-
dimensional plane mw(u®, uy), where u” is the vector defining the design point of the system in
Eq. 3 and uj represents the design point vector for the corresponding linear oscillator (i.e., with
y = 0). Figure la shows this plane with the failure domain shaded. As can be seen, the failure
domain in this plane is disjointed and the FORM approximation (shown in thick broken line)
grossly overestimates it. Indeed, the FORM approximation of the problem yields a probability of
failure of 8.3x107, while the “exact” result obtained by Monte Carlo simulation is 3.0x10” with
10° samples. To understand the reason for this behavior, in Figure 1b we show a plot of the re-
sponse at t = 12s as a function of the ratio 7 = [|u||/||u*||, where u is a vector coincident with
the design-point vector u*, i.e., the response X (12s,7u"). This plot is similar to one used earlier
by Katafygiotis & Zuev (2008). Note that for any choice of u we have a deterministic input, and
the ones selected along the vector u* have time histories proportional to the design-point excita-
tion with r being the scale factor. The remarkable observation in Figure 1b is that, as the excita-
tion is scaled up, the response at time t = 12s is far from monotonically increasing. After an ini-
tial rise up to the specified threshold value of x4 for » = 1, the response X(12s,7u") rapidly
drops to values far below x,. This has to do with the rapidly stiffening behavior of the selected
Duffing oscillator. (Its stiffness increases by a cubic law in terms of the displacement.) As the
excitation is scaled, the peak response occurs at an earlier time and, as the oscillator stiffens, the
response at time ¢ = 12s falls below the threshold value. This explains why the failure domain
in Figure 1a is disjointed.
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It is clear that FORM is not a good solution method for solving the point-in-time reliability
problem for the selected Duffing oscillator. But let us see if FORM can be used to solve the re-
liability problem defined in Eq. 2. We select the interval T = (12s,24s) so that the reliability
problem is that of determining the probability that the peak of the stationary response over a pe-
riod of 12 seconds will exceed the threshold x;. This problem has N = 2401 random variables
and the series system in Eq. 2 has 1201 “components.” In Figure 2 we examine the system
(composite) failure domain Uger{xo < X(t;, w)} in four different planes m(uj, uj ), where the
index j corresponds to the time-point “components” at £ = 12,12.5,12.7 and 13.5s. It can be
seen that the composite failure domain gradually regularizes so that by the time instance 13.3s, it
is a fully joined domain. This behavior is a consequence of the stiffening nature of the Duffing
oscillator. As the excitation is scaled, i.e., points are taken farther away from the origin in the
standard normal space, a peak in the response occurs at an earlier time that exceeds the specified
threshold. Hence, later time-point “components™ are all expected to have fully joined failure
domains.
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Figure 2: Failure domains for the first-passage probability over duration T'= (12s, 24s) in planes
(" uy;") for (a): £ = 12s, (b): ¢ = 12,58, (¢): £ = 12.7s and (d): ¢ = 13.5s

In constructing a FORM approximation for the series system, we linearize the failure surface
for each time-point “component.” Clearly, when the safe domain is closed and convex as in Fig-
ure 2d, the linearization at each design point is active only over a small neighborhood of the de-
sign point. Because of this, one can expect that the FORM approximation will provide reasona-
bly accurate results for such cases. Indeed, the FORM approximation of the failure domain in
the plane w(uj, uj ;) for time point ¢t = 13.5s, shown in Figure 3a, indicates a fair approxima-
tion of the actual failure domain shown in Figure 2d. To numerically examine this further, in
Figure 3b we show estimates of the probability Pe[ x, < max,er X(¢, u)] obtained by FORM
(solid line) along with Monte Carlo simulation results (dots with dashed lines indicating one-
standard deviation confidence interval) for increasingly longer time intervals T, starting from
T = (12s,12s), which is identical to the point-in-time problem described earlier, to T = (12s,
24s). It can be seen that the relative error in the FORM approximation gradually decreases as a
longer time interval is considered. The bulk of this error is related to the poor approximation of
the composite failure domain for a short initial interval.

In summary, while FORM is not well suited for systems such as the Duffing oscillator which
produce disjointed failure domains, even for such problems FORM produces fairly accurate re-
sults for the reliability problem defined over an interval of time. Indeed, the instantaneous relia-
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bility problem is not of practical interest; it is only a means for obtaining the reliability over an
interval of time, which is the problem of real practical interest. The above analysis shows that,
even for the Duffing oscillator that has a peculiar stiffening behavior, FORM provides a reason-
able solution for this reliability problem of practical interest.
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Figure 3: (a) FORM approximation of the failure domain in the plane /a(u,-‘,u,;,-*) at t = 13.5s for the
first-passage probability over duration T = (12s, 24s) for the Duffing oscillator; (b) Comparison of FORM
system-reliability approximation with the Monte Carlo sampling (MCS) result

3.2 Hysteretic Oscillalor
Consider a nonlinear oscillator characterized by the Bouc-Wen hysteresis law:
mX () + cX () + k[aX () + (1 — a)Z(t)] = F(t) (4)
2(t) = —y|X@®)| 12O Z(@) — nIZ@® "X (t) + AX(E) (5)

where m, ¢ and k are as defined for the Duffing oscillator, @ = 0.5 is a nonlinearity parameter
(a = 1 corresponds to the linear case), Z(t) 1s the hystcretlc component of the response, and
n=1, A=1land y = n = 1/(20,), where ¢ = nSym?/(ck) is the mean-square response of
the linear oscillator, i.e, for @ = 1. In this case, the input excitation is considered as F(t) =
—mA(t), where A(t) is the base acceleration with a constant power spectral density Sy = 1
m?/(rad.s”). This oscillator was earlier studied by Koo et al. (2005). It is important to note that,
in contrast to the Duffing oscillator, the hysteretic oscillator has a softening behavior.

As in the previous case, we first consider the point-in-time reliability problem at t = 12s for
the threshold xy = 30y. Using Af = 0.01s, the problem has N = 1 + ¢t/At = 1201 random va-
riables. Figure 4a shows the failure domain in the plane w(u*, uy), where again u* is the design
point for the system in Eqgs. 4 and 5 and uj represents the design point for the corresponding li-
near (a = 1) oscillator. In contrast to Figure 1a for the Duffing oscillator, the failure domain of
the hysteretic oscillator is well behaved and appears to be amenable for a FORM approximation.
In fact, in the plane considered in Figure 4a, deviations of the tangent plane from the true limit-
state surface on the two sides of the design point tend to cancel out. Insight into the good beha-
vior of the hysteretic oscillator is gained by examining the response X (12s,7u”) as a function of
the scale parameter r, as shown in Figure 4b. It can be seen that the response at t = 1Zs almost
linearly increases with the scale parameter r. (The near linearity of this curve is the basis for the
well known “equivalent displacement rule” (Chopra 2007) in deterministic inelastic dynamic
analysis.) This has to do with the softening behavior of the hysteretic oscillator — as forcing
function is scaled upward, the displacement at all times tends to increase. These observations
suggest that one can expect FORM to provide good approximations of the point-in-time reliabil-
ity problem for a hysteretic system. Indeed, the FORM approximation of the point-in-time fail-
ure probability for this case is Pr[x, < X(12s,u)] = 2 x 10~ *, which practically coincides
with the “exact” value computed by Monte Carlo simulation.
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Figure 4: (a) Failure domain in the plane (u’, u; ") at ¢ = 12s; (b) Bouc-Wen oscillator response at f =
12s along the design point direction
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Figure 5: System reliability approximation of the failure domain in the plane #(u,’, uy;") at ¢ = 12s for

the Bouc-Wen oscillator

Next, we consider the reliability problem Pr[x, < max,.r X(t,u)] with T = (12s, 24s).
Figure 5 shows the true and FORM-approximated failure domains in the plane m(u”’, u}). While

the two domains are not identical, their probability contents are nearly the same. Indeed, solu-
tion of the series system problem by FORM yields Pr[x, < max,cr X(t,u)] = 0.0172, while \
the “exact” result obtained by Monte Carlo simulation is Pr|x, < max,.; X(t,u)] = 0.0131.

Noting that in reliability analysis order-of-magnitude accuracy is what we expect, the FORM
approximation of the hysteretic oscillator appears to be good both for the point-in-time and

time-interval reliability problems.

4 EFFECT OF HIGH DIMENSION

As mentioned earlier, several investigators have argued that the design point in FORM analysis

loses its significance in higher dimensions, and that the FORM approximation is expected to de-
terjorate with increasing number of random variables. For example, Valdebenito et al. (2010)

have used idealized limit-state functions to show how the FORM approximation rapidly deteri-

orates with increasing dimension of the random space. For this reason, they have argued against

the use of FORM for high-dimensional problems. This argument suggests that in reliability

problems involving random processes or fields, the FORM approximation should deteriorate as
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the discretization is made finer and a larger number of random variables are used to formulate
the problem. We explore this problem in this section.

For the Bouc-Wen oscillator of the previous section, we consider three different discretiza-
tions of the input excitation F(t) corresponding to the time steps At = 0.02s, 0.01s and 0.005s.
For the point-in-time reliability analysis at t = 12s, these respectively correspond to N = 601,
1,201 and 2,401 random variables. Figure 6a shows plots of the reliability index f = ®~*(1 —
p), where p = Pr [x; < X(12s,u)], on a normal probability chart as a function of the norma-
lized threshold xq/ay. The dots in this figure are “exact” results obtained by 10° Monte Carlo
simulations with the gray dashed lines indicating the one-standard deviation confidence interval,
while the three coinciding lines are the FORM approximations based on the three time steps
with varying number of random variables. It is remarkable that there is virtually no distinction
between the three FORM approximations, even though the number of random variables varies
by a factor of 4. Figure 6b shows similar results for the interval reliability problem Pr[x, <
maxer X (t,0)] with T = (12s, 24s), where the numbers of random variables for the three time
steps now are N = 1,201, 2,401 and 4,801. Again, we find the three FORM approximations to
nearly coincide and to be in close agreement with the “exact” Monte Carlo results.
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Figure 6: Comparison of the FORM and Monte Carlo Sampling (MCS) results with varying numbers of
random variables for (a) point-in-time reliability at ¢ = 12s, and (b) first-passage probability for T = (12s,
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Figure 7: Comparison of the limit-state surfaces for different discretizations in the plane a(u’, u;") for the
instantaneous failure at 7 = 12s

The above observations suggest that FORM approximations are independent of the fineness
of the discretization of random processes or fields, provided, of course, that the discretization is
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sufficiently fine to accurately represent the underlying continuum problem. The idea that higher
dimensions necessarily deteriorate the accuracy of the FORM approximation is incorrect. One
can conjecture that with increasing fineness of the discretization, the influence of each random
variable diminishes and the limit-state surface in the higher dimensions becomes more flat. As a
simple demonstration of this, in Figure 7 we compare the limit-state surfaces of the above point-
in-time problem in the planes m(u*, uy) for each discretization scheme. It can be seen that the
surface becomes more flat for finer time steps. This effect, which was first mentioned in Der
Kiureghian & Fujimura (2008), has also been observed for finite-element reliability problems
with discretized random fields in Koduru (2008).

In summary, while for certain problems the FORM approximation may deteriorate in high
dimensions, this is not necessarily the case when the random variables result from discretization
of random processes or fields. Hence, discounting FORM as a solution method for all high-
dimensional reliability problems is unwise.

5 CONCLUSIONS

The applicability of FORM to solve nonlinear stochastic dynamic problems is demonstrated. As
any approximate numerical method, assessing the suitability of FORM requires an understand-
ing of the physical nature of the underlying system. We have shown that the accuracy of the
FORM approximation is strongly dependent on the nature of nonlinear problem at hand, and not
necessarily on the dimensionality of the standard normal space that arises primarily from the
discretization of a random process or field. For the type of practical nonlinear problems investi-
gated, the error in the probability computation with FORM remained independent of the number
of random variables employed in the discretization of the input process.
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Discretization of stochastic processes in time domain by sinc
basis functions and application in TELM analysis.
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University of California Berkeley, USA.

ABSTRACT: This paper investigates methods for discrete representation of band-limited sto-
chastic processes. The approach employs a unified framework for such representations by use of
concepts of Hilbert space and general decomposition of a signal into basis functions. The pro-
posed representation, in general, allows reducing the number of random variables used in the
simulation of stochastic processes. Direct application of the representation is employed for Tail-
Equivalent Linearization Method (TELM) analysis. An example of a single degree of freedom
hysteretic oscillator subjected to a Gaussian band-limited white noise simulated by use of sinc
basis functions is presented. The accuracy and efficiency of the representation are compared
with those of current discretization methods.

1 INTRODUCTION

Structural Engineering problems often require consideration of nonlinear behavior of structures
at high reliability levels. In such applications, the interest is focused on the tail of the response
probability distribution rather than on its mean and standard deviation.

Fujimura and Der Kiureghian (2007) developed the Tail-Equivalent Linearization Method
(TELM) to tackle this class of problems. The approach, which is based on the First-Order Reli-
ability Method (FORM), defines an equivalent linear system for each considered response
threshold by equating its tail probability with the first-order approximation of the tail probability
of the nonlinear response. TELM requires discretization of the input process and its representa-
tion in terms of a finite set of standard normal random variables. Since the computational time
of the method depends on the number of random variables, TELM may become computationally
demanding when this number is too large. For this reason, formulations that reduce the number
of random variables are of interest. The present work serves two purposes. The first is to criti-
cally review commonly used methods for representing stochastic processes in time and frequen-
cy domains. The second is to develop a unified framework for such representation by use of
concepts of Hilbert space and general decomposition of a signal into basis functions. Issues of
periodicity of the signal and efficiency of the representation, as measured in terms of the num-
ber of required random variables, are discussed. Finally an example that makes use of sinc basis
functions is presented and is incorporated into TELM analysis. It is shown that the time required
to solve the non-linear random vibration problem with TELM is significantly reduced if this
representation of the input stochastic process is employed.

2 REVIEW OF TIME- AND FREQUENCY-DOMAIN DISCRETIZATION

A general function can be represented as an infinite linear combination of a set of basis func-
tions:

f(&) = Xo=15n (E)cn. (1)
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A stochastic process can be derived from the above representation by considering the function
as a particular realization of a sample space. The developed approach considers the
cients, ¢y, as a series of random variables. Thus, we write the stochastic process as

F(8) = u(®) + E3=15, (O)Cy, 2
where C,, are zero mean, independent random variables and p(t) defines the mean function of
the process. The choice of the basis functions s, (t), together with the variances of C,,, deter-
mine the autocorrelation function of the process. Furthermore, when C,, are Gaussian random
variables, the process is Gaussian. Note that this representation allows separating the “random-
ness” of the process (inherent in the coefficients C,) from its time evolution (represented by
s, (t)). In this paper we focus on zero-mean stationary Gaussian processes so that we can re-
write (2) as:

F(t) = s(t) - ou, (3)
where s(t) = [s,(£) ...sy(£)]7 is the vector of basis functions and u = [u; ...uy]" is a vector
of statistically independent standard normal random variables. This representation employs
truncation of the series after N terms, which is necessary for computational purposes.

2.1 Time-domain discretization

The choice of the basis functions not only determines the covariance structure of the process but
also the discretization method. In Der Kiureghian (2000), for example, a filtered white noise
process is represent by

F(£) = [n(t) * WIU(®) = f; n(t - )W (Ddr, @

where = denotes convolution, U(t) is the unit step function, 7(t) the impulse-response function
(IRF) of a stable linear filter, and W (t) a white-noise process. In the time-domain discretization,
for a selected time step At and initial time t, = 0, W (t) is approximated with the following rec-
tangular wave process:

-~ 1 rt
W) = i t:_1 W(ndt, thy <t <ty n=12..N. (3)

The resulting process is band-limited at frequency @ = m/At [rad/s] and has variance ¢? =
2mS/At, where S is the double-sided spectral density of the white noise. Defining the standard
normal random variables as w,, = W, (t,)/o , {5) can be written in the form:

W(t) = s(t) - ou, (6)

§a) =1, G KLt )
= (0, otherwise.

The discrete version of (3), F(t), is obtain by replacing W (t) with W(t)

F(©) = [n@®) « WO = s(t) - ou (&)
sp(t) = f:il Nt —1)dr, tyq <t<t, n=12..N )
=0 t<t,

2.2 Frequency-domain discretization

An alternative to the time-domain discretization is the frequency-domain discretization pro-
posed by Shinozuka (1975-91) and Deodatis (1991), which is based on the original work of Rice
(1954). The representation is the canonical Fourier series with random coefficients with sine and
cosine as selected basis functions. The discretization of the frequency domain is obtained by se-
lection of a discretization step Aw and a band-limit wy = . The process is written as:

F(t) = 3%, oy [uy sin(wt) + i1, cos(wyt)] = s(¢) - Zu (10)
S(t) = [51(8), vy 55 (£); 5, (L), ., S (D], (11)
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where © = [uy, -, g, Uy, -, Ug]", k() = sin(wyt), 5,(t) = cos(wyt) and X is the diagonal
matrix containing the variances 02 = 2 5(wy) Aw, in which S(w) is the double-sided spectral
density of the process. If S(w) = S, then F(t) = W (t). In contrast to the time-domain discreti-
zation that leads to a band-limited process, the frequency domain discretization leads to a peri-
odic process. For a selected Aw, (10) produces a process with period T = 2n/Aw.

4 FUNCTIONAL SPACE INTERPRETATION

In this section we introduce some basic and intuitive concepts underlying functional spaces,
which are helpful to extend our discrete representation of a random process. Functional spaces
are not the main focus of the paper, so we choose a simple intuitive and not rigorous approach.
Moreover, we restrict ourselves to band-limited Gaussian white-noise processes. This is not re-
strictive, because other processes can be easily derived from white noise by filtering either in
time or frequency domain; moreover, the band limit is not a real restriction, since one can never
achieve pure white nome in practice. It is assumed that the reader is familiar with the concepts
of a vector space RY, Euclidian norm, and orthogonality. When the dimensionality of the vector
space R" is pushed to infinity, each vector can be viewed as a function. We equip this new
space with norms which define the length of our function. Because the dimensionality is not fi-
nite, we restrict the function to have a finite norm. The notions of inner product and
orthogonality can be extended to this space by the usual limit of the Riemann sum pushed to an
integral. In lieu of this concept, the inner product of two vectors is viewed as the integration be-
tween two functions with finite norm and the concept of orthogonality is easily extendable. Two
functions are said to be orthogonal if their inner product is zero. A vector space equipped with
an inner product is said to be an inner product space.

Functions fi(t), ..., fy (t) are linearly independent if YN enfu(t) =0istrue only if ¢, = 0
for all n. The span of a set of functions is the subspace consisting of all linear combinations of
the functions in the set. A set of functions is a base for a space or subspace when the functions
are linearly independent and their span covers the whole space or subspace. A set of orthonor-
mal functions is a set of functions which are orthogonal with unitary norm. We reserve the letter
sy, for each element of the orthonormal base. Given an orthonormal base, each coefficient ¢,
can be easily computed as the orthogonal projection of the function onto each element of the
base Sn: ie, ¢, = (f(t), s,(t)), where {,) denotes the standard inner product between two func-
tions, i.e. f f(£)s(t)dt. Equation (1) can be viewed as the expansion of the function f(t) into a
set of orthonormal basis functions.

A complete inner product space is named a Hilbert space. The concept of completeness is be-
yond the scope of this paper, but both representations described above can be cast in the Hilbert
space framework. As an example, the space of the square integrable functions over a period
[0,T] is a Hilbert space; it is easy to show that the set of sines and cosines in (10) represents a
complete set of orthonormal basis for such functions. Each realization of a periodic banded
white noise of period T can be described by the above expansion and the coefficients of the
Fourier series are the orthogonal projections of the realization into each sine and cosine.

It should be intuitively clear that any valid set of basis functions can be used to describe the
(square integrable) realizations of a stochastic process and, thus, to describe the process itself by
randomizing the coefficients. In particular, given a set of orthonormal basis (we don’t really
need orthonormal but it is convenient), we can easily describe Gaussian processes, choosing the
random coefficients to be Gaussian random variables. A vector in a finite space or a function in
the Hilbert space can be described completely if all the coordinates of the expansion (1) are pro-
vided. In application, we truncate the infinite series after a sufficiently large N. If we consider
only a finite number of basis functions, we constrain our work into a subspace V, which is the
span of the finite set of these basis functions, and the approximate realization is the orthogonal
projection of the real realization into this subspace. This has an important consequence because
it guarantees to be the best approximation of the real realization for the given basis.
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5 THE SINC BASIS FUNCTIONS

As mentioned in the previous section, in general any basis can be used to describe a particular
Hilbert space. In this section we present the sinc function as a particular basis to describe a
Gaussian process. The use of the sinc basis function to represent band-limited white noise was
first proposed by Grigoriu (1993). This choice is suggested by the theory of signal processing,
in which sinc functions are used to reconstruct band-limited signals from a set of equally spaced
samples. In this paper we investigate if the sinc function offers a valid set of basis functions to
describe a Gaussian process and the advantages that we gain in implementing this representation

in TELM analysis.

5.1 The sinc function

The original sinc function is defined as sinc(t) = sin(mt) /mt. In this paper we use a scaled
version, which is denoted as sinc,; and is defined as
sin(nt/At)

nt/At (12)
Given a function f(t) that is band-limited at @ and a set of equally spaced samples
f(At), ..., f(nAt) such that the sampling rate At < m/@w, the original function can be recon-
structed from its samples by the following series:

f(@) = X5=0 F(n4t) sincy, (t — nAt). (13)

Equation (13) is also known as Whittaker—Shannon interpolation formula or sinc interpolation
and its proof can be found in, e.g., Vertelli and Kovacevic (1995). What is interesting to observe
is that (13) can be viewed independently of (1) and be used in general to simulate a continuous
band-limited white noise process. The advantage of this formulation over the classical time-
domain formulation is that the sampling rate (which is the sampling simulation rate for a sto-
chastic process) is completely separated from the analysis integration step, so that we can con-
trol directly and independently the band-width of the process. The advantage over the frequen-
cy-domain formulation is that the coefficients of the series are just samples of the original
function, or in the case of a stochastic process they are the simulated samples, and the spectrum
of the realization is continuous, not discrete.

sincy (£) =

5.2 Orthonormality
To prove the orthonormality of the sinc functions we make use of the Parseval identity, i.e.
(FE(D), g(t)) = 1/2n(F"(w), G (w)), where the superscript H denotes the Hermitian conjugate
and F(w) and G(w) are the Fourier transforms of f(t) and g(t), respectively. Moreover the
Fourier transform of the sinc function is the rectangular function i.e.
Flsinc(t)] = I, (14)
Flsincae(t)] = At Ty ae, (15)

where F[ 1= (, e ") is the linear Fourier transform operator and I1,, is the rectangular function
defined as 1, = 1 for -7 < w < and Il; = 0 otherwise. Equation (15) is directly derived
from equation (14) by use of the scaling property of the Fourier transform. In the case of equa-
tion (14), the orthonormality condition is verified by:

(sinc(t — n),sinc(t — m)) = (sinc(t) * §(t — n), sinc(t) * §(t — m))
= %( L e L e 9y — ﬁ( I, e!(""M@) = sinc(n — m) = §[n—m]. (16)

On the other hand, when we introduce the scale factor At, (sincy.(t — Atn),sincy(t —
Atm)) = At so that we have to normalize our base function by VAt ie. s,(t) =1/
VAt sinc(t — nAt ) and the orthonormality is verified by repeating the passages of (16).

256



5.3 The coefficients of the series
In this subsection we compute the coefficients of the orthonormal series expansion
f(&) = Zn=alf (£), sa (D)} (D), (17)
where s, (t) = 1/VAE sinca,(t — nAt ). Again using the Parseval identity and considering @
as the band-limit of f(t) we obtain
(), 5n(6)) = 5 (F¥ (), VAE TIm eionaty = VAL (£ () plomaty = JRE f(nAt).  (18)
At

Examining (17) and (18), it is evident that (13) can be considered a Hilbert space framework.
Moreover (13) can be read also as an orthogonal but not orthonormal expansion if we consider
as base function just sincy (t — iAt).

5.4 The autocorrelation of the process

In this subsection we verify that the sinc expansion provides a valid autocorrelation function for
a band-limited white noise. In this case we have a closed-form solution for the autocorrelation
function that is well known to be again the sinc function. For a white-noise process W (t) that is
band-limited at &, we can write:

W(t) = En=o Cpsincy, (t — ndt), (19)
where At < /@ and C,, are zero-mean and unit-variance, statistically independent random var-
iables. The autocorrelation function can be written as

o(t,t) = E[W (), W(t)]

= Y=o om=0 E[CnCip]sinc (t — ndt ) sinc, (' — mat )

= Yw_o E[CZ]sincy, (t — nAt )sincy, (t' — nAt )

= Yin=0 SinCa (t — nAt )sincy, (' — ndt). 20)
The series (20) converges to sincy(t), where T = t — ¢'. To prove it, we represent the function
sincy(t — t') for a fixed t’ with the orthogonal expansion (13):

sinca(t —t) = Tneo sinca (nAt — t') sincy, (t — nAt)
= Y%, sincy (t — nAt) sinca, (t — nAt), 2

where in the second line we have used the symmetry property of the sine function. Thus the au-
tocorrelation function can be written as @(t,t') = sincy, (¢t —t) = sincy (7).

6 TELM ANALYSIS WITH SINC BASIS FUNCTION

In the previous section we have established that the sinc expansion can be used to represent a
band-limited white noise. In this section we investigate the extension of TELM analysis based
on sinc functions. For a review of TELM analysis in the time domain the reader should consult
Fujimura and Der Kiureghian (2007), while TELM analysis in the frequency domain can be
found in Garré and Der Kiureghian (2009). The extension of TELM in the context of sinc ex-
pansion or in general in the context of any orthonormal or orthogonal basis is rather straightfor-
ward. The governing equation of a stable system, subject to a stochastic input, can be written as:

LIX(©)] = F(1), (22)

where L[] is a differential operator. If the system is linear, the response can be obtained by con-
volving its IRF with the input excitation:

X(6) = [h(®) * F(®)] = ZN_y [ oh(t — Dsp(D)dtuy = a(t) -u, 23)
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where h(t) is the IRF of the linear system and a, = [ Ut agh(t — 1)s,(t)dr. As mentioned earli-
er, filtering can be used to describe colored white noise. If the system is nonlinear, a numerical
solution can be used to compute the response X(¢t) for a given u. Given the representation in
(3), the response X (t) is either an explicit or implicit function of the standard normal variables,
ie. X(t) = X(¢t,u). Given a response threshold of interest x, at a specific time t,, the tail prob-
ability is defined as Pr[x < X(t,, u)]. Reliability theory is then used to compute the tail proba-
bility by defining a limit-state function g(x, t,, ) = x — X(ty, u) and rewriting the probability
statement as Pr[g(x, t,, u) < 0]. In the standard normal space the design point w*, which is the
point belonging to limit-state surface g(x, t,, u) = 0 with minimum distance from the origin, is
then computed. The importance of the design point, whose norm is the reliability index, is de-
scribed in Koo et al. (2005). Once u” is determined, TELM employs FORM to obtain the first-
order approximation of the tail probability. If the system is linear, the limit-state surface is a
hyperplane with gradient a(t) and the design point is given in closed form as

* x a(tx)T
U= el et =
Given the design point, the gradient of the hyperplane can be determined by reversing (24):
% T
ats) = wim (25)

In the nonlinear case, first the design point is computed then the limit-state surface is expanded
in Taylor series at the design point:

glx,te,u) =x— [X(t, u™) + V- X(t,, u™) - (u—u") + h.o.t]. (26)

The first-order approximation of Pr[g(x,t,, u) < 0] is then obtained by keeping the linear
terms, resulting in Pr[g(x, t,, u) < 0] = ®[—||u*||], where @[ | is the standard normal cumula-
tive probability function. This corresponds to linearizing the limit-state function at the design
point, enforcing a(t,) = V,-X(t,, u") and defining a tail-equivalent linear system (TELS), as
described below. Up to this point, the formulation is applicable to any valid basis functions that
describe the input Gaussian process.

In the conventional time-domain TELM formulation, denoting by M the total number of dis-
crete time points in the integration scheme, the IRF h(t) of the TELS is determined by solving
the set of equations

%:1 h(tx 2 tm) Sn(tm) =an (tx): = LN 27

To solve this system, the time sampling rate has to be equal to the time integration step, i.e.
N = M. In other words, the response analysis is dictating the band limit of the represented pro-
cess. In nonlinear analysis, the time discretization step has to be sufficiently small in order to
guarantee convergence and, consequently, a large number of random variables has to be used to
represent the input process. Usually this large number of random variables is useful in repre-
senting the high frequency content in the excitation, which may not be important relative to the
resonant frequencies of the filter and the structure. In the sinc formulation there is no such con-
straint and the solution lies in the subspace of the selected band-limited signals. Thus, we can ei-
ther obtain the solution of (27) as a min-norm solution of the over-determined system, i.e.
M > N, or, better in terms of efficiency, we can compute directly the samples of the IRF enforc-
ing M = N and then reconstruct the IRF using again the sinc interpolation formula, i.e.,

2%:1 h(tx - tm) Sn(tm) = an(tx)r n=1,..,N (28)
h(t) = YN _, h(mAt) sinc,, (t — mAt). (29)

Once the IRF of the TELS is obtained, methods of linear random vibration analysis are used to
compute the statistic of interest for the selected response threshold x.
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7 NUMERICAL INVESTIGATION

In this example we examine the computational efficiency gained in TELM analysis by use of
the sinc formulation. The efficiency of TELM is related to the time used to determine the design
point ©” in the constrained nonlinear optimization problem:

u* = argmin{|lull | g(x, t,,u) = 0}. (30)

The scheme adopted here is the improved HLRF algorithm proposed by Zhang and Der
Kiureghian (1995), which requires computation of the nonlinear response X (t,,u) and its gra-
dient V. X(ty, u). The gradient is computed by the DDM algorithm proposed by Zhang and Der
Kiureghian (1993). The computationally most expensive part of the improved HLRF algorithm
is that of the gradient, which strongly depends on the number of random variables.

The proposed example is a single-degree-of-freedom oscillator described by the non-
degrading hysteretic Bouc-Wen model, which was also investigated by Fujimura and Der
Kiureghian (2007). The excitation is due to base motion and is described by F = —ml, , where
m is the mass of the oscillator and U, is a white noise with spectral density § = 1[m?/
(rad s3)]. The mass, damping and stiffness are selected so as to have the fundamental period of
1[Hz] and 5% damping for small-amplitude oscillations. The response threshold x = 3ay, is se-
lected, where gy is the RMS of the corresponding linear oscillator. Figure 1 shows the design-
point excitation and response, as well as the IRF and FRF of the TELS. These are for two dif-
ferent sampling rates, which result in band limits of 50[Hz] and 2.5[Hz]. Table 1 shows the re-
duction in computational time achieved by implementation of the sinc expansion with varying
sampling rates. It can be seen that accurate results are achieved by sampling rate as large as
0.2[s] with a 20 fold reduction in the number of random variables. Of course this is possible
here because the oscillator is not affected by large frequencies, as is evident in the FRF in Fig-
ure 1d.
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Figure 1: a) Design-point excitation, b) design-point response, ¢) IRF, d) FRF
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Table 1. Efficiency of the TELM based on sinc basis functions, time integrations step 0.01[s]

Sampling Band N. random Reliability Computational
rate [s] limit [Hz] variables index time [s]

0.01 50.0 1000 12T 836

0.02 25.0 500 2435 321

0.05 10.0 250 3.122 291

0.10 5.0 100 3122 113

0.20 25 50 3133 51

& CONCLUSION

In this paper we investigate an alternative method to discretize stochastic processes and its ap-
plication in TELM analysis. We move from the concept of Hilbert space to represent general
signals as expansion of basis functions. From this representation we generate a stochastic pro-
cess by randomizing the coefficients of the series expansion. In particular, we study the repre-
sentation of band-limited white noise. Other processes can be modeled through filtering. We
employ sinc functions as the set of orthonormal basis, but any other valid set of basis can be
used. Next, we extend TELM analysis to the sinc representation. The advantage of this formula-
tion, as compared to the usual time-domain TELM formulation, is evident by the complete sepa-
ration and control of the band limit of the process from the time integration step used in the re-
sponse analysis. For problems in which the high frequency content in the input excitation is not
important, the number of random variables used to describe the process can be significantly re-
duced. The advantage compared to the frequency-domain formulation lies in complete avoid-
ance of the issue of periodicity; furthermore, the represented spectrum is continuous.

A drawback of the sinc expansion is that the function does not die off and this reduces its ef-
ficiency. This is the reason why the authors are currently exploring other basis functions, includ-
ing a lower order Lagrange polynomial expansion, to further improve the efﬁciency.1
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