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An efficient Monte Carlo simulation algorithm is developed for estimating the 
probability content of rectangular domains in the multinormal probability space. The 
algorithm makes use of the properties of the multinormal distribution, as well as the 
concept of importance sampling. Accurate estimates of the probability are obtained 
with a relatively small number of simulations, regardless of its magnitude. The 
algorithm also allows easy computation of the sensitivities of the probability with 
respect to distribution parameters or the boundaries of the domain. Application of the 
algorithm to structural system reliability is demonstrated through a simple example. 
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1 I N T R O D U C T I O N  

Let X = (Xl, "-', Xn) be a vector of  jointly normal random 
variables with mean vector m = (m i, ' " ,  ran) and positive- 
definite covariance matrix C having the elements cij, i ,j  = 1, 
2, ..., n. Recall that the density function ~o(xl, x2, " ' ,  xn) of  
X has the form 

1 
~O(Xl, x2, "" ,  Xn)= 

(2r)  n/2 v/det C 

exp [ - ½(x - m)TC - l(x - m)] 

-- 1 e x p [ - l ~  ~ . d i j ( x i - m i ) ( x j - m j )  1 
(2) n/2 ~/det C i= I j = 1 

(1) 

where dij are the elements of  the inverse matrix D ---- C -l. 
By P(Q), we denote the probability that X lies in the 
n-dimensional rectangular domain Q = [al,b 1] × [a2,b2] × 
• " × [an,bn], i.e. 

['b, fb2 fb,, 
"'" ~O(Xl, "'" x~) dXl '"dx.  (2) 

P(Q) = Ja, Jo2 a,, , 

The above probability is of  interest in many applications. 
We note that for at . . . . .  an = - % P(Q) = P( n "i=lXi 
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<- bi) = 'I~(bl, ..., bn) is the n-variate cumulative normal 
probability function. Johnson and Kotz I (Chapter 35) 
devoted an entire section of  their book to reviewing the 
analytical and numerical methods for computing this prob- 
ability. Unfortunately, efficient methods for an arbitrary 
covariance matrix and a large number of  random variables 
are not available. 

The multinormal probability is of  special interest in the 
theory of  structural system reliability. As shown by 
Hohenbichler and Rackwitz, 2 in a first-order approximation, 
the reliability of  series and parallel structural systems can be 
reduced to the standard multinormal cumulative probability 
(with zero means and unit variances). In such applications, 
the correlation matrix is defined in terms of  the unit normal 
vectors at the points of  linearization of the component limit- 
state surfaces of  the system. The coordinates b i correspond 
to the reliability indices associated with the individual com- 
ponents. For general structural systems, the reliability can 
be obtained in terms of  the probabilities of  parallel sub- 
systems representing cut sets or link sets of  the system. 2 
Because of  these relations, there has been continued interest 
in the structural reliability community in methods for com- 
puting the multinormal probability integral. Several current 
reliability codes (e.g., PROBAN by Det Norske Veritas) 
make use of an approximate algorithm, which is based on 
a recursive formula derived by Hohenbichler and Rackwitz 2 
and an asymptotic approximation developed by Gollwitzer 
and Rackwitz. 3 Other approximations have been proposed 
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by Genz 4 and Joe. 5 Later in this paper, we present an 
example that illustrates the use of  the multinormal 
probability in structural system reliability analysis. 

In this paper, we present a new, efficient and accurate 
Monte Carlo simulation approach for computing the multi- 
normal probability of rectangular domains for arbitrary n, m 
and C. Use is made of  the properties of  the multinormal 
probability distribution and the concept of  importance 
sampling. 6 It is shown that sufficiently accurate estimates 
of  P(Q) can be obtained with a small number of  simulations, 
regardless of  the magnitude of  the probability of  interest. 
The algorithm is also effective in computing the sensitivities 
of  the probability with respect to distribution parameters, or 
the boundaries of  the domain. 

In the following, by ~Ok(xklxl, "" ", Xk-1) we denote the one- 
dimensional conditional density function of  X, for given X l 
= xl, -' ", Xk-l = Xk-1. We denote the corresponding condi- 
tional cumulative distribution function by cb,(xklxl, ..., 
x~_l). It is well known 1 that this distribution is normal 
with mean 

k - I  
i~ l  Xi -- mi mk(Xl' " '" X k - 1 ) : m k - -  = dki ~kkk (3) 

3. If  in the first k - 1 steps we have avoided a failure, or 
equivalently, the outcomes of  the first k - 1 steps 
satisfy the inequalities ai <- xi <- bi, i = 1, ..., k - 
1, then we proced to the kth step. For this we generate 
Xk --- xk using the one-dimensional normal probability 
distribution with mean ink(X1, "", Xk-O and variance 
vk (see eqn (3)). 

4. I fXk q~ [ak,bk], the trial is terminated and the outcome 
is 'failure'. 

5. If, finally, (x l, "", x,) E Q, then the trial is terminated 
and the outcome is 'success' .  

We denote by P~ the probability that the outcome of  the 
SCS trial is a 'success' .  

Proposit ion 1 

P(Q)  = el  (4) 

P r o o f  We have 

Pl = ~ba'~l(Xl) dxl fbaZ2tP2(X2lXl) dX2"'" 

Ib"~n(XnlXl, "", Xn-  1) dxn 
an 

and variance u~ = 1/dkk. Furthermore, by ¢ 1,'",k_l,k+l,'",n(Xl, 
• " ,  X~_l, xk+l, "" ", xnlx~) we denote the (n - D-dimensional 
conditional density of  X1, " ' ,  X~_I, X~+l, " ' ,  Xn given X, = 
xk. It is well known that this distribution is also normal with 
mean vector m (k) = ml + Cl2c~2(xk -- ink) and covariance 
matrix C (k) = C~1 - C12c~ 2C21, where m 1 is obtained from 
m by eliminating the kth row, C t~ is obtained from C by 
eliminating the kth row and column, and C12 = C~I is the 
kth column of  C excluding the kth row. 

For explanatory and comparison purposes, in the follow- 
ing section we describe the Sequential Conditioned 
Sampling (SCS) algorithm. Our main algorithm, which we 
describe in the subsequent section, is a vastly more efficient 
version of  the SCS. The main algorithm is denoted the 
Sequential Conditioned Importance Sampling (SCIS) 
algorithm. 

F,F: fb,, 
= . . .  ¢P(Xl, "", Xn)dx I d x 2 . . . d x  n = P ( Q )  

..l a I J a 2 .]a n 

(5) 

The proof is complete. 
Proposition 1 suggests the following algorithm for esti- 

mating P(Q): perform N independent SCS trials and esti- 
mate P(Q)  using the formula 

/3(Q) = number of  successes 
N (6) 

The estimated coefficient of  variation (c.o.v.) of  the above 
estimate is easily shown to be 

3(0) (7) 
c.o.v. = N/3(Q) 

2 T H E  S E Q U E N T I A L  C O N D I T I O N E D  S A M P L I N G  
ALGORITHM 

The outcome of  a trial by the SCS algorithm is random and 
can be a 'failure' or a 'success' .  The trial consists of  a 
random number of  steps, which can be at most n. The trial 
proceeds as follows: 

1. First we generate a random value X I = X l in accord- 
ance with the one-dimensional normal probability 
distribution with mean m l and variance c L~. 

2. I f x  I ~ [a l,bl], the trial is terminated and the outcome 
is 'failure'. If  Xl E [al,bL], we proceed to the next 
step. 

3 THE SEQUENTIAL CONDITIONED 
IMPORTANCE SAMPLING ALGORITHM 

The SCIS algorithm improves on SCS by using an import- 
ance sampling density at each step of  the trial instead of  the 
normal density. The outcome of  a trial by the SCIS 
algorithm is a number. Each trial consists of  n steps, as 
described below: 

1. In the first step, a random value X l is sampled in 
accordance with the probability density function 

~1 (Xl) . 
ci~l ( [ - ~ 1  ~ b i ])l[al,  bl ]tX1 ) (8) 
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where  @l([a l ,b l ] )  = @l(bl)  - q ' l ( a l )  and I[a, bl(X ) is the 
indicator  funct ion 

1 i f x E [ a , b ]  

I[a'bl(X)= 0 i f x  ff  [a, bl (9) 

The  reader  wil l  r ecogn ize  eqn (8) as the condi t ional  densi ty 

o f  X1 g iven  X1 E [al ,bl ] .  

2. In the kth step, after the values  Xl, -- ' ,  xk-1 have  been  

sampled,  we  sample  a r andom value  x~ in accordance  

with  the probabil i ty  densi ty  funct ion 

~Ok(Xk [Xl, " " ,  Xk - 1 ) 1 ) l[ak" bkl(Xk) (1 O) 
• :.7 L-- 

where Ok([at,bk]lXl, "" ", Xk-l) = Ok(bklxl, "", x~_l)-~k(aklxj 

• " ,  Xk-l). Clear ly,  eqn (10) is the condi t ional  densi ty  o f  Xk 

g iven  X1 = xl  n ... n Xk-i  = Xk-l n Xk E [a~,bk]. 

3. The  trial is te rminated  after we  sample  the nth va lue  

X n • 

Let  Y be the r andom var iable  

Y= FI Ok([ak'bt ]lxl' "", xk- l )  (11) 
k = l  

Proposition 2 

P(Q) = E[ Y] (12) 

where  E[.] denotes  the expectat ion.  

Proof W e  can write  the r ight-hand side o f  eqn (12) in the 

fo rm 

f f n E [ Y ] =  _ ,dx l ' "  _ dx n ~k([ak,bk]lXl, "" ,  X k _ l )  
k = l  

-I ~Ok(XklX1, "" ,  X k - 1 )  1)i[ak,bk](Xk) 
x " ~ k ~ x ~ ,  : x~_ 

k = l  ""  

f f . . . .  ~Ol(Xl)~O2(X21Xl)'"~On(Xn]Xl, "" ,  X n - 1 )  
J a I Jan 

× dx~...dx, = P(Q) (13) 

The  p roof  is comple te .  

Proposi t ion 2 suggests  the fo l lowing  a lgor i thm for calcu-  

lating P(Q):  pe r fo rm N independent  SCIS  trials and obtain 

the N ou tcomes  y l, "" ,  yu  o f  the random variable  defined in 

eqn (11). Est imate  P(Q) by the formula  

1 N 

['(Q) = -~ ~ Yi (14) 
i=l  

It is an easy mat ter  to show that the coeff ic ient  o f  var ia t ion 

o f  the above  es t imate  is 

1 i ~ "  ( .Yi- /5(0))2  (15) c . o . v . =  NP(Q) i=1 

W e  note that the computa t ion  o f  Yi f rom eqn (11) involves  

repeated evaluat ions  o f  the one-d imens iona l  cumula t ive  

normal  probabi l i ty  function.  It is also worth not ing that, 

when  the r andom variables  are statistically independent ,  

eqn (11) g ives  the exact  result  with each trial. 

T a b l e  1.  E s t i m a t e s  o f  P(Q) b y  d i f f e r e n t  m e t h o d s  

Cube 

SCS algorithm 

Exact P ( Q )  

P(Q) p(Q) N 

SCIS algorithm 

C.o.v. 
P(Q) 
P(Q) N C.o.v. 

0.2 
0.4 
0.6 
0.8 
0.2 
0-4 
0.6 
0.8 
0.2 
0.4 
0.6 
0.8 
0.2 
0-4 
0.6 
0.8 
0.2 
0-4 
0-6 
0-8 
0.2 
0-4 
0.6 
0.8 

[ - 5, - 1] 3 
[ - 5, - 1] 3 
[ - 5, - 1] 3 
[ - 5, - 1] 3 

[ - 10, - 2] 3 
[ - 10, - 2] 3 
[ - 10, - 2] 3 
[ - -  10,  - -  2] 3 
[ - 5, - 1] 5 
[ - 5, - 1] 5 
[ - 5 ,  - 115 
[ - 5, - 1] s 

[ - -  10,  - 2] 5 
[ - 10, - 215 
[ - 10, -- 2] 5 
[ - 10, - 2] s 
[ - -  5 ,  - -  1] 7 
[ -- 5, -- 1] 7 
[ -- 5, -- 1] 7 
[ -- 5, -- 1] 7 

[ -- 10, -- 2] 7 
[ -- 10, -- 2] 7 
[ - -  10,  - -  2] 7 
[ -- I0, -- 2] 7 

5.20 X 10 -3 1-12 68,517 
9.95 X 10 -3 1"13 35,243 
2.19 X 10 -2 1.02 17,506 
4.94 × 10 -2 0-94 8218 
2-22 × 10 -5 1.44 1,000,000 
1-00 × 10 -4 1.33 1,000,000 
5-63 × 10 4 1.40 500,000 
2.90 X 10 -3 1.21 113,220 
2.31 × 10 -4 1.09 1,000,000 
1.28 × 10-3 1.16 267,703 
6.81 × 10 -3 1-11 52,284 
2.82 X 10 -2 1.01 13,596 
4-42 X 10 -8 - -  1,000,000 
2.71 × 10 -6 0.92 1,000,000 
7.35 × 10 5 1.96 1,000,000 
1.16 X 10 -3 1.32 260,701 
1-32 × 10 -5 1.29 1,000,000 
2.53 × 10 -4 1.15 1,000,000 
2-98 × 10 -3 1-16 115,402 
1.95 X 10-2 1-09 18,404 
1.59 x 10 -m - -  1000,000 
1.16 X 10 -7 - -  1,000,000 
1-85 × 10 -5 2.70 1,000,000 
6.48 × 10 -4 1-60 383,169 

0.05 
0.05 
0.05 
0.05 
0.18 
0.09 
0.05 
0.05 
0.06 
0.05 
0.05 
0.05 

0.71 
0-08 
0.05 
0.24 
0.06 
0.05 
0.05 

0-14 
0.05 

1"01 

1 "03 
0"96 
0'97 
1'01 

0"97 
0"96 
0"96 
0.99 
0'92 
0'99 
1 "00 
0.99 
0.99 
0.99 
1.01 

0.95 
1 . 0 9  

1 .08  
1 .09  
0-94 
1 .08  

0.99 
1 .04  

10 
21 
60 
101 
10 
30 
98 
150 
10 
57 

228 
271 
10 

166 
353 
483 
17 

378 
721 
546 
21 

793 
2068 
1310 

0.02 
0.05 
0-05 
0.05 
0.03 
0-05 
0-05 
0"05 
0.04 
0.05 
0'05 
0"05 
O-04 
0"05 
0-05 
0-05 
0.05 
0'05 
0.05 
0"05 
0.05 
0.05 
0-05 
0"05 
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4 N U M E R I C A L  TESTS 

Without loss of  generality, in the following tests we con- 
sider the case of  a standard multinormal probability distri- 
bution, i.e. the case with m = (0, .-., 0) and C = R, where R 
is a correlation matrix having the elements P0, i,j = 1, ..., n. 
A linear transformation of  random variables can be used to 
transform a non-standard case into this standard form. 

4.1 Comparison of algorithms 

For the special class of  correlation matrices with PO = rirj 
for i ¢ j and Oii = 1, the probability P(Q) can be represented 
by a one-dimensional integral. ~'7,s For this class, denoted 
the 'D-S class', the exact value of  P(Q) can be computed by 
one-dimensional numerical integration. Table 1 compares 
the exact results computed by Simpson's rule with the esti- 
mates obtained by the SCS and SCIS algorithms for selected 
values of  the correlation parameter ri = rj = r (i.e. Po = r2 
for i ~a j), dimension n and cubes [a,b] n. The following rule 
is used for terminating the simulation in each case: for the 
SCS algorithm, the simulation is terminated when c.o.v. - 
0.05 or N = 1 0 6 ;  for the SCIS algorithm, the simulation is 
terminated when c.o.v. -< 0.05 and N --> 10. For each 
algorithm, we have listed the ratio of  the estimate P(Q) to 
the exact value P(Q), as well as the corresponding c.o.v, and 
N. Note that, for three cases with small probabilities, the 
SCS algorithm did not produce a result within the maximum 
allowable N. 

The results in Table 1 clearly demonstrate the accuracy of  
the SCIS algorithm and its vastly improved efficiency rela- 
tive to the SCS algorithm. We note that the ratios P(Q)/P(Q) 
for the SCIS algorithm are all near unity and that the 
required number of  trials to achieve c.o.v. --< 0.05 is 
manageably small in all cases. The results indicate that 
the required number of  SCIS trials tends to increase with 
the correlation and dimension. However, no dependence on 
the magnitude of  the estimated probability is observed. 

Since the computational effort within each SCS or SCIS 
trial is nearly the same, the required computation time to 
achieve a desired level of  accuracy is approximately 
proportional to the number of  trials in each algorithm. 
Table 1 shows that the SCIS algorithm is several orders of  
magnitude faster than the SCS algorithm. Absolute 
measures of  the computation time for the SCIS algorithm 
are given below. 

4.2 Symmetry test of the SCIS algorithm 

Under the choice of  the correlation matrix from the D-S 
class with ri = rj = r, additional tests are possible based 
on the geometric symmetry properties of  the corresponding 
multinormal probability space. Let Ql and Q2 be two rec- 
tangular domains having the property that Q I transforms 
into Q2 by means of  changing the numbering of  the coordi- 
nate axes. Then, necessarily P(Q¿) = P(Q2). We use this 
property to further examine the SCIS algorithm. 

We represent the seven-dimensional cube [0,2] 7 as a 

union of  small cubes of  the form 

Qt = 11 x 12 x " .  X 16 (16) 

where each interval lk is either [0,1] or [1,2]. The label I is 
the corresponding binary sequence 1 = (e b "", eT), wherein 
et = 1 i f l l  = [0,1], el = 2 i f l l  = [1,2], etc. There are 27 = 
128 small cubes Ql. Using the SCIS algorithm with N = 
100 and r = 0.5 (i.e. P0 = 0.25 for i ¢ j), we estimate the 
probabilities P(Qt) for each of  the 128 cubes. Next, we 
define the groups of  cubes 

Gk = {Qt : the number of l ' s  in the label sequence I is k 

(171 

The number of  members within each group G~ is given ir 
Table 2. Due to the symmetry property described above 
P(QI) is constant within each group Gk. Table 2 lists th~ 
empirical mean and c.o.v, of the SCIS e s t i m a t e s  P(at) for th~ 
cubes within each group Gk. The small c.o.v.s indicate tN 
closeness of the estimates of  P(Qt) within each group, thu: 
providing a further test of the accuracy of the SCIS algorithm 

4.3 Additivity test of the SCIS algorithm 

We can use the estimates P(Qt) for the small cubes to per 
form an additivity test of  the SCIS algorithm. We calculat~ 
independent SCIS estimates for 14 rectangular domain: 
obtained as unions of  subsets of  the cubes: 

B i =  U Ql, Bi= U Qt, i =  1, 2, ... 7 (18 
8 i = ] 8 i = 2  ' 

(Bi is the complement of  Bi within [0,2] 7) and compar, 
them with the values obtained by appropriate summatiol 
of the estimates P(Qt). The results are shown in Table 3 
Note that each rectangular domain Bi or Bi contains 6, 
cubes. Since the estimates of P(Qt) were based on N -- 
100 trials each, the summation result for each Bi o r  n i  i 
effectively based on 6400 trials. The direct SCIS result il 
Table 3 for each Bi or/~i is based on N = 1000 trials. Th, 
results using the two methods are practically identical, onc, 
again demonstrating the remarkable accuracy of  the SCI~ 
algorithm. 

4.4 Convergence test of the SCIS algorithm 

The results in Table 1 indicated that the required number 
SCIS trials for a given level of  accuracy tends to increas 

Table 2. Statistics of estimates P(Qt) within each group Gk 

Number of Mean of C.o.v. of 
members P(QII e s t i m a t e s  P(al) estimate 

within group within group within group 

Go 1 8.07 × 10 -5 - -  
GI 7 8-50 × 10 -5 0-035 
G2 21 9.90 x 10 -5 0-034 
G3 35 1.31 X 10 -4  0.020 
G4 35 1.91 x 10 4 0.022 
G5 21 3-17 x |0 4 0.017 
G6 7 5.88 × 10 -4 0-011 
G7 1 1.21 x 10 -3  - -  
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T a b l e  3 .  A d d i t i v i t y  tes t  o f  S C I S  

P(Bi )  P(Bi )  

i SCIS Summation SCIS Summation 

1 0.0160 0.0160 0.0101 0.0100 
2 0.0161 0.0159 0.0101 0.0101 
3 0.0160 0.0160 0.0101 0.0100 
4 0.0160 0.0160 0.0101 0.0100 
5 0.0160 0.0159 0.0101 0-0101 
6 0-0160 0.0160 0.0101 0.0101 
7 0.0160 0.0160 0.0101 0.0100 

transformed variables z i  = ( - 1) ix i  • Note that each pair of  
the transformed variables with one odd and one even index 
has correlation coefficient Pii ---- - 0.5. The results are 
shown in Fig. 2. The probability contents within the rectan- 
gular domains are now extremely small. Nevertheless, the 
SCIS algorithm converges more rapidly than in the previous 
case. This has to do with the nearly uniform distribution of  
the probability density within the rectangular domains 
considered for the transformed variables. 

with increasing dimension and correlation between the 
variables. To further examine the efficiency of  the SCIS 
algorithm, we compute the estimates of  P ( Q )  for rectangular 
domains defined by ai  = - o~, b i  = _ 2 + 0.05(i - 1), i = 
1, 2, ..., n for n = 5, 10, 15 and 20. We use a correlation 
matrix from the D-S class with r i = rj = r -- ~ (i.e. Pij = 

0.5 for i :~ j). Fig. 1 shows plots of  estimates P ( Q )  and the 
corresponding c.o.v.s against the number of  trials N, as well 
as the computation times required to achieve c.o.v. --< 0.05 
on a desktop computer with a 100-MHz Pentium processor. 
It is noted that the simulation result quickly stabilizes 
in all cases and that the required computation time is 
trivial even for n = 20. In order to examine the effect of  
negative correlation, we repeated the same analysis for the 

5 P R O B A B I L I T Y  S E N S I T I V I T I E S  

In certain applications, including structural system reliabil- 
ity, the sensitivities of  the multinormal probability with 
respect to the parameters defining the rectangular domain 
Q or the means, variances and correlation coefficients of  the 
variables are of  interest (see Hohenbichler and Rackwitz 9 
and Bjerager and Krenk 1° for applications in structural 
system reliability). The sensitivities with respect to the 
mean and variances are easily obtained in terms of  the 
matrix defining the linear transformation to the standard 
normal space. The SCIS algorithm offers a convenient 
way for computing the sensitivities with respect to the 
boundaries of Q and the correlation coefficients pij, as 
described below. 

6 

5 

4 

3 

2 

1 

0 

0.3 

0.2  

0.1 

0 .o  

e ( o )  X 104 

n = 5, cpu t ime = 0.28 s 

n = 10, cpu time = 1.04 s 

n = 15, cpu time = 3.07 s 

n = 20, cpu time = 5.05 s 

i P i 
1000 2000 3000 

I C.O.V 

I I I 
0 1000 2000 3000 

N 

Fig. 1. Estimated/3(Q) and c.o.v, as a function of number of trials for variables xi. 
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Consider the sensitivities of P(Q)  with respect to the 
bounds ak and bk of Xk. Using eqn (2), these can be written 
as  

Oa k a l a a k _  t aak  + 

a, " '"  Xk_l ,  ak, Xk + l, "", Xn) 

d X l " " d x k -  1 dxk + l " " d x .  = - ~k(ak)Pak(Q ) 

(19) 

Ob k al oak  iJ  ak+l 

fi"~O(Xl, "", Xk_l ,  bk, Xk+l, "", Xn) 
n 

dXl " ' d X k - 1  dXk + l " "dx ,  = - ~Ok(bk)Pbk (Q) 

(2O) 

where ~o~(.) is the marginal density of Xk, Q = [a l,b 1] X ... 
X [ag-l,bk-l] × [ak+l,bk+l] × "'" × [an,b,] is a rectangular 

domain in the ( n  - l)-dimensional space, and 

(b, fb~_, I'bk+, 

P x , ( Q ) = J a  ""Ja~_,Jak+ "" 

I 
b,, 

a ~Ol,...,k_l,k+t,...,n(Xl, "", Xk_l ,  Xk+l, "", Xn[Xk) 

dxl""dXk- 1 dxk+ l '"dxn (21) 

The required probabilities Pak(Q) and Pok(Q) can be esti- 
mated by SCIS using the conditional mean vector m [~) and 
covariance matrix C ~k) for given Xk = ak and Xk = bk, 
respectively. Hence, an SCIS simulation in the (n - 1)- 
dimensional space yields the sensitivity with respect t~z 
each parameter ak or b~. Unfortunately, a similar resull 
for the sensitivities with respect to the correlation coeffi- 
cients is not possible. Instead, we explore the possibility ol 
using finite differences. 

Given that each SCIS trial is a realization of a continuous, 
random variable (see eqn (11)), the sensitivities with respec~ 
to any set of parameters can be estimated by finite differ- 
ences, provided the same sequence of random numbers ar~ 

8 P(Q) × 10 m 

4 ~ m = 38, n =  20, cpu time = 0.77 s 

3 

I ' . - ~ ' ~ * n ' 3 1 0 ,  c~ut ime = 0 . 2 2 s  

0 I I 

0 50 100 150 

0.3 ~ C.O.V. 

0.2 

0.1 

0.0  t 
0 50 1 0 0  150 

N 

Fig.  2. Es t imated  P ( Q )  and c.o.v, as a funct ion  o f  n u m b e r  o f  trials for var iables  x i .  
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1.0 

~/3(Q) / 001 by (22) 

.2/3(0) I a b  I by  (20 )  

05 

\ 
o I I I I 

0 1000 2000 3000 4000 

N 

used in the simulation, i.e. 

OP(Q) = la(Q)o+A o -- P(Q)o 
(22) 

O0 A0 

where 0 is the parameter of  interest, A0 is a small variation 
in it, and P(Q)x is the SCIS estimate of  P(Q) for 0 = x. To 
generate the same sequence of  random numbers, we initiate 
the simulation with a fixed seed. 

To explore the effectiveness of  the above approaches, the 
sensitivities of  P(Q) are computed with respect to b I and p 12 
for the case with n = 20 in Fig. 1, i.e. for ai = - o% bi =- - 2 

+ 0.05(i - 1), i = 1, 2, -.., 20, and a correlation matrix from 
the D-S class with ri = rj = r = X / ~ .  Fig. 3 shows plots of  
the estimates of  OP(Q)/Obl based on eqns (20) and (22) 
and the estimate of  OP(Q)/Op 12 based on eqn (22) as a func- 
tion of  the number of  trials. It is seen that the estimates 
based on the finite difference approach are not as stable as 
those based on eqn (20), but they still provide reasonably 
accurate approximations of  the probability sensitivities. 

Fig. 3. Probability sensitivities as a function of number of trials. 

6 E X A M P L E  A P P L I C A T I O N  

We present this example in order to demonstrate the use of  
multinormal probability in reliability analysis of  structural 
systems. 

Consider the one-bay frame in Fig. 4(a), which is sub- 
jected to random horizontal and vertical loads H and V. The 
frame has random plastic moment capacities Mg, i ---- 1, --., 
5, at the critical locations shown in the figure. Under the 
applied loads, this frame may fail in any of  the three 
mechanisms shown in Fig. 4(b). Based on the principle of  
virtual work, the three mechanism are described by the 
limit-state functions 

gl(M1, M2, Ma, Ms, H ) = M I  + M 2 + M 4 + M  5 - 5 H  

(23) 

gz(M2, M3, M4, V) =M2 +2M3 + M 4  - 5V (24) 

Y 

H 
|1 ! 

M~ 
I V 

M3 

lore 

(a)  

 :115m 
I 

m e c h a n i s m  1 

(b) 

Fig. 4. Example frame structure and its failure mechanisms. 
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g3(M1, M3, M4, Ms, H, V) 

= M~ + 2M3 + 2M4 + M5 - 5H - 5V (25) 

such that the event Gk = {gk <- 0} denotes the occurrence 
of  the kth mechanism. Assume Mi have identical means 
equal to 200 kNm, identical standard deviations equal to 
30 kNm and the correlation coefficients PM, Mj = 0.3, i ~ j.  
Furthermore, assume H has mean 60 kN and standard 
deviation 30 kN, and V has mean 60 kN and standard 
deviation 15 kN. H and V are assumed to be statistically 
independent of  each other and of  Mi. We first assume a 
joint normal distribution for these variables. The case of  
non-normal distributions is discussed subsequently. 

The frame represents a series system reliability problem, 
as the failure event is the 
events Gk, k = 1, 2, 3. 
normal variables u = (u~, 
of  the random variables x 

union of the 'component '  failure 
We first introduce the standard 
-",  uT) by a linear transformation 
= (MI, "", Ms, H, V) such that u 

has a zero mean and a unit covariance matrix. In the space of  
u, each of  the hyper-planes gk(x) = 0, k = 1, 2, 3, can be 
written in the form Bk - O/[u = 0, where/3k denotes the dis- 
tance from the origin to the kth hyper-plane (commonly 
known as the reliability index) and O/~ denotes the corre- 
sponding unit normal vector. The solutions for/3k and O/k are 
listed in the first three rows of  Table 4. 

Let uk = O/Tu. It is easy to verify that ut are jointly normal 
random variables having zero means, unit variances and 
correlation coefficients Okl = °/To/l,  k, l = 1, 2, 3. Using 
the O/k values in Table 4, we obtain 0~,~2=0.278, 
P,2~ =0 .645  and P~3,~ = 0.875. The probability of  failure 
of  the frame can now be formulated as follows: 

Pf=e[kU=lgk(X)---0] = e  [k~l ( /3k- O/Tu)--0] 

= P  /5 k - ~  = I - P  --</5 k 
k l k 

(26) 

We see that the failure probability of  the frame is given as 
the complement of  a trivariate cumulative normal prob- 
ability. Using 1000 SCIS simulations in the space of  
variables uk, we obtain / 3 f = 0 . 3 2 9 ×  10 -2  with a 
negligible c.o.v. 

Now suppose the frame survives a proof test under a 
horizontal load h = 80 kN and a vertical load v = 70 kN. 
This observation gives us indirect information about the 
plastic moment capacities of  the frame. We wish to 
update our estimate of  the failure probability in light of  
this information. Let g4 = - -  gl(M1, M2, M4, Ms, h), 
g5 = - g2(M2, M3, M4, u) and g6 = - g3(Mb M3, 
M4, M5, h, p). It should be clear that {g4 --~ 0 f"l g5 <- 
0 ¢3 g6 -< 0} denotes the observed event. Using the 
notation Gi =- {gi <- 0}, the updated failure probability is 

Pflsurvival  at proof test = P(Gi t.J G2 U G3 IG4G5G6) 

P(GI G4GsG6 U G2G4GsG6 U G3G4GsG6) 
= (27) 

P(GaG5G6) 

The probability in the numerator can be expanded by use ot 
the inclusion-exclusion rule to read 

P(G] GaG5G6 U G2G4G5G 6 U G3GaG5G6) 

= P(G 1G4G5G6) + P(G2GaGsG6) + P(G3G4GsG6) 

-- P(G 1G2GaG5G6) - P(G] G3GaGsG6) 

- P(G2G3G4GsG6) + P(G1G2G3G4GsG6) (281 

Each of the above terms represents a parallel systerr 
reliability problem (intersection of  events) and can be com. 
puted in terms of  the multinormal cumulative probability 
For example, 

P(GIG2G3G4G5G6)=P[k~=I gk(x) < -- O] 

= P  f'l 13 k-<pk = P  vk<-- -/Sk (29 
k = l  k 1 

where, in the last equation, we have employed the symmeW. 
property of the normal space. The result is a six-dimensiona 
multinormal cumulative probability in terms of the variable 
uk. Each of the probability terms in eqn (28) and the denomi 
nator in eqn (27) are computed by 1000 SCIS simulations 
The required values for/3k and O/k are listed in Table 4. Th, 
results are used to estimate the updated probability as follows 

^ 

Pflsurvival  at proof test 

0.174 x 1 0 - 2 4 0 . 7 2 1  × 10 -5  4 0 . 2 1 0  x 10 -2  - 0 . 1 8 9  x 10 -6  
= 

- 0 . 7 9 0  × 1 0  - 3  - 0 . 3 3 4  × 1 0 - 5 4 0 . 1 8 7  × l 0  - 6  

=0.305  × 10 -2  

1 - 0.661 - 6 

(3C 

Table 4. ~k and O/T for the case of normal random variables 

T 
~k  O/k 

1 2-92 -0.333 -0.244 -0.061 -0.185 -0.158 0-876 
2 4.27 -0.307 -0.413 -0-520 -0.234 0.000 0.000 
3 2-86 -0.357 -0.157 -0.340 -0.281 -0.129 0-714 
4 - 1.21 0-689 0.506 0.126 0.383 0-327 0.000 
5 -3.33 0.400 0.538 0.677 0.304 0-000 0.000 
6 -0.79 0.593 0.261 0.564 0.466 0-213 0.000 

0.00 
0.64 
0-35 
0.00 
0.00 
0.00 
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Table 5. ~k and a~ for the case of non-normal random variables 
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1 2.32 --0.161 -0.123 -0.031 -0.093 
2 4.01 -0.203 --0-275 -0.331 -0-158 
3 2.47 -0.203 --0.089 -0-190 -0.157 
4 -6-62 0.691 0.505 0.126 0.382 
5 -7.33 0-408 0.568 0.632 0-335 
6 --4.38 0.608 0-260 0-551 0.456 

-0.080 0.970 0.000 
0-000 0.000 0.865 

-0.073 0.909 0-243 
0.326 0.000 0.000 
0-000 0-000 0.000 
0.227 0.000 0-000 

The updated probability of failure is found to be smaller than 
the previous failure probability ( = 0.329 × 10-2). This is due 
to the 'good' news of survival during the proof test. The 
difference, however, is found to be rather small. This is 
because the failure probability of the frame is dominated by 
the uncertainty in the loads, for which the proof test does not 
provide any information. 

The above solution is applicable when the random vari- 
ables are normal. For the case of non-normal random vari- 
ables, the first-order reliability method (FORM) can be used 
to obtain an approximation of the failure probability. 2 For 
this purpose, we first transform the random variables x into 
standard normal variables u through a non-linear transfor- 
mation. Each of the hyper-planes gk(x) = 0 transforms into a 
curved surface in the space of u. These surfaces are linear- 
ized (i.e. approximated by their tangent hyper-planes) at 
their respective points of minimum distance from the 
origin of the u space./3~ and o~ k now represent the distance 
from the origin and the unit normal vector for the approxi- 
mating hyper-planes. The remaining analysis is as before, 
except that the probability estimates must now be regarded 
as first-order approximations. 

Suppose Mi, i ---- 1, ..., 5, are jointly lognormal, H has a 
type I extreme-value distribution for the largest values and V 
has a gamma distribution. The first and second moments are 
as before. For these distributions, the FORM approximation 
results in the/3k and otk values listed in Table 5. Using these 
values, 1000 SCIS simulations produce ~/3f ~ 0.120 × 10-  l 
and /°flsurvival at proof test ~ 0.115 × 10-- 1. It is interesting 
to note that these probabilities are much larger than 
the corresponding probabilities for the case of normal 
distributions. The reason is the heavier tails of the type I 
and gamma distributions relative to the tail of the normal 
distribution. 

The above examples demonstrated the use of the multi- 
normal cumulative probability function for calculation of 
probabilities for series and parallel systems (respectively 
representing unions and intersections of events). The 
sensitivities of the multinormal probability are also of 
interest in reliability analysis. For example, in the above 
problem one may be interested in the sensitivities of the 
updated probability with respect to the proof load values h 
and u. By use of the chain rule, one first finds the sensi- 
tivities of/3~ and ak with respect to these parameters, and 
then computes the sensitivities of the multinormal prob- 
abilities with respect to/3k and o~ in the manner described 
in the previous section. 

7 SUMMARY AND CONCLUSIONS 

We have presented an efficient and accurate algorithm for 
computing the multinormal probability of rectangular 
domains by simulation. The required computational effort 
increases modestly with the dimension of the problem and 
the correlation between the random variables, but it is 
independent of the magnitude of the probability of interest 
and is easily manageable for large dimensions and strong 
correlations. The algorithm can also be used to compute the 
sensitivities of the probability with respect to correlation 
coefficients and parameters that define the boundaries of 
the domain. The multinormal probability and its sensitiv- 
ities have important applications in the theory of structural 
system reliability. This is demonstrated through a simple 
example. 
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