
 1

Abstract

Author: Anna Abajyan

Web technologies are so fast that it is becoming a tough job for businesses as

well as developers to keep up the pace. New tools pop up every year letting the

old ones go sideways and frontend development is a major part of the web.

Businesses are focusing more on front-end development to enhance user

interaction, site efficiency, interactivity and look & feel. And of course the

popularity of front-end development tools is on the rise due to ever changing

web techs. So developing my project I‘m using some front-end development

tools which are included in 2018 top list: Chrome Developer Tools, NPM Node

JS, SASS and CodePen. Besides I‘m using some CSS modern technics which

are not supported by all browsers. So my goal is to show the power of CSS,

what effects and what can be done with modern technics. And further you will

see the final result of the website for a fictional company using only CSS. (No

JavaScript and no Bootstrap).

Keywords: web development, frontend, CSS, SASS, website development, web

tools

 2

Licenses for Software and Content

Software Copyright License (to be distributed with software developed for masters

project)

Copyright (c) <2018> <Anna Abajyan>

Permission is hereby granted, free of charge, to any person obtaining a copy of this software

and associated documentation files (the "Software"), to deal in the Software without

restriction, including without limitation the rights to use, copy, modify, merge, publish,

distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the

Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or

substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,

WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR

OTHER DEALINGS IN THE SOFTWARE.

(This license is known as ―The MIT License‖ and can be found at

http://opensource.org/licenses/mit-license.php)

Content Copyright License (to be included with Technical Report)

LICENSE

Terms and Conditions for Copying, Distributing, and Modifying

Items other than copying, distributing, and modifying the Content with which this license was

distributed (such as using, etc.) are outside the scope of this license.

1. You may copy and distribute exact replicas of the OpenContent (OC) as you receive it, in

any medium, provided that you conspicuously and appropriately publish on each copy an

appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer

to this License and to the absence of any warranty; and give any other recipients of the OC a

copy of this License along with the OC. You may at your option charge a fee for the media

and/or handling involved in creating a unique copy of the OC for use offline, you may at your

option offer instructional support for the OC in exchange for a fee, or you may at your option

offer warranty in exchange for a fee. You may not charge a fee for the OC itself. You may

not charge a fee for the sole service of providing access to and/or use of the OC via a network

(e.g. the Internet), whether it be via the world wide web, FTP, or any other method.

 3

2. You may modify your copy or copies of the OpenContent or any portion of it, thus forming

works based on the Content, and distribute such modifications or work under the terms of

Section 1 above, provided that you also meet all of these conditions:

a) You must cause the modified content to carry prominent notices stating that you changed

it, the exact nature and content of the changes, and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or

is derived from the OC or any part thereof, to be licensed as a whole at no charge to all third

parties under the terms of this License, unless otherwise permitted under applicable Fair Use

law.

These requirements apply to the modified work as a whole. If identifiable sections of that

work are not derived from the OC, and can be reasonably considered independent and

separate works in themselves, then this License, and its terms, do not apply to those sections

when you distribute them as separate works. But when you distribute the same sections as

part of a whole which is a work based on the OC, the distribution of the whole must be on the

terms of this License, whose permissions for other licensees extend to the entire whole, and

thus to each and every part regardless of who wrote it. Exceptions are made to this

requirement to release modified works free of charge under this license only in compliance

with Fair Use law where applicable.

3. You are not required to accept this License, since you have not signed it. However, nothing

else grants you permission to copy, distribute or modify the OC. These actions are prohibited

by law if you do not accept this License. Therefore, by distributing or translating the OC, or

by deriving works herefrom, you indicate your acceptance of this License to do so, and all its

terms and conditions for copying, distributing or translating the OC.

NO WARRANTY

4. BECAUSE THE OPENCONTENT (OC) IS LICENSED FREE OF CHARGE, THERE IS

NO WARRANTY FOR THE OC, TO THE EXTENT PERMITTED BY APPLICABLE

LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT

HOLDERS AND/OR OTHER PARTIES PROVIDE THE OC "AS IS" WITHOUT

WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT

NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK OF USE OF THE OC IS

WITH YOU. SHOULD THE OC PROVE FAULTY, INACCURATE, OR OTHERWISE

UNACCEPTABLE YOU ASSUME THE COST OF ALL NECESSARY REPAIR OR

CORRECTION.

5. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN

WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY

MIRROR AND/OR REDISTRIBUTE THE OC AS PERMITTED ABOVE, BE LIABLE TO

YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR

CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE

THE OC, EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

(This license is known as ―OpenContent License (OPL)‖ and can be found at

http://opencontent.org/opl.shtml)

 4

Brief introduction

HTML(Hyper Text Markup Language) is the language in which most websites

are written. HTML is used to create pages and make them functional. The code

used to make them visually appealing is known as CSS (Cascading Stylesheet) -

language allows a browser engine to paint elements of the page with specific

features, like colors, positioning, or decorations.

SASS is a CSS preprocessor, an extension of CSS that adds power and elegance

to the basic language. Sometimes you need a tool that will help you write

maintainable, future-proof code, all while reducing the amount of CSS you have

to write (keeping it DRY).Sass, one of the most popular front-end development

tools in this category is a nine-year-old open-source project which pretty much

defined the genre of modern CSS preprocessors. Although a little tricky to get

to grips with initially, Sass‘s combination of variables, nesting, and mixins will

render simple CSS when compiled, meaning your stylesheets will be more

readable and (most importantly) DRY.

CodePen is a web development environment for front-end designers and

developers. It is all about faster and smoother development. It is considered to

be one of the top front-end development tools when it comes to better coding

environment.

Node JS allows developers to write and run JavaScript applications on the

server. Developers started using node.js to also write tools to help them with

local web development.

NPM is a simple command line interface that allows developers to install and

manage packages on their local computers. There are all kinds of open source

tools, libraries and frameworks needed for modern development. Modern web

development could simply not exist without a package manager.

Chrome Developer tools It is one of the top front-end development tools when it

comes to hands-on debugging. You are going to run into many issues when

building a new feature, adding a new page or fixing an existing issue. The

Chrome Developer Tools are a set of debugging tools built into Chrome. These

tools allow you to do a wide variety of development testing in your browser,

which saves a ton of development time.

Using the ‗Device mode‘ you can test how responsive the website will be.

‗Sources panel‘ is used to debug your JavaScript using breakpoints. ‗Timeline‘

helps you identify run-time performance issues.

 5

BEM (Block, Element and Modifier) methodology which gives our CSS code a

solid structure that remains simple and easy to understand.

 Considerations

Before starting we should take in mind 3 main principles while building the

website:

1. Responsive design (responsive images…)

2. Maintainable and scalable code

3. Web performance (size of images…)

Maintainable and scalable code considered to be clean,

modular, reusable and ready for growth. So we have to

think about the layout of our webpage or web app before

writing code (modular building blocks that make up

interfaces; held together by the layout of the page; re-

usable across a project, and between different projects;

independent, allowing us to use them anywhere on the

page). Next is to build our layout in HTML and CSS with

a consistent structure for naming classes (Block Element

Modifier: BLOCK: standalone component that is

meaningful on its own; ELEMENT: part of a block that

has no standalone meaning; MODIFIER: a different

version of a block or an element). And the last is to create

a logical architecture for our CSS with files and folders.

For huge projects it‘s best to use the 7-1 pattern, means to

have 7 different folders for partial Sass files, and 1 main

Sass file to import all other files into a compiled CSS

stylesheet. But considering that my project is not so huge I

used only 5 folders and 1 main Sass file.

 base/

 components/

 layout/

 pages/

 themes/

 6

 abstracts/

 vendors/

As to responsive design we have to consider 3 basic rules:

Fluid Grids and Layouts which allows content to easily adapt to the current

viewport width used to browse. And using in website %-s rather than pixels(px)

for all layout-related lengths.

Flexible/Responsive images

Images behave differently than text content, and so we need to ensure that they

also adapt nicely to the current viewport.

Media Queries

To change styles on certain viewport widths (breakpoints), allowing us to create

different version of our website for different widths.

The Process

Step1. Well at the beginning before developing my project I searched and read

many articles and tutorials related to my project and chose what tools and

methods should be used. Also looked through many designs of different

websites and sketched the idea of how the website should look like, as without

having proper idea we can‘t code. And the first was building the header. I will

bring examples of more important parts of code in my project to my opinion, to

show how it was implemented. So the first was developing the header of my

website, which is generally the most important part of the website. In the header

I used the clip-path CSS property that creates a clipping region that defines

what part of an element should be displayed. More specifically, those portions

that are inside the region are shown, while those outside are hidden. So as you

can see (in picture1) I made polygon shape.

The background used the linear-gradient(), CSS function that creates an image

consisting of a progressive transition between two or more colors along a

straight line. Its result is an object of the <gradient> data type, which is a special

kind of <image>. After implemented animation on texts, buttons and logo using

a @keyframe rule with a name that is then used by the animation-name property

to match an animation to its keyframe declaration. And each @keyframes rule

contains a style list of keyframe selectors, which specify percentages along the

animation when the keyframe occurs, and a block containing the styles for that

keyframe.

 7

Step2.

Building the About section. I made the heading text gradient using background-

clip, and later other headings are applied too except the main header. The

background-clip CSS property specifies if an element's background, whether a

<color> or an <image>, extends underneath its border. Background-clip: text

means the background is painted within (clipped to) the foreground text. This

property works only with prefix(-webkit-). Also used outline-offset property

with outline property in images when hovering, this sets the amount of space

between an outline and the edge or border of an element.

Picture1.

Header

Left & Right anim for

texts. Bottom anim for

button. Right anim for

logo.

 8

Step3. Next section is features section.

As you can see I implemented linear-gradient background on this section again

and other sections too which later you will see. Instead of using clip property I

used here another trick called skew property. Further I used icons on each

boxes, which were downloaded from source link (linea.io). And this file was

included in CSS folder. Whenever you want to change icon you can simply

choose from folder another one with different name, instead of searching in

internet.

Picture2. About

section

 9

Step4. The Services section (here we have rotating cards)

Well in this section I used new property ―perspective‖ which is not

implemented in all of the browsers. The perspective CSS property determines

the distance between the z=0 plane and the user in order to give a 3D-positioned

element some perspective. Each 3D element with z>0 becomes larger; each 3D-

element with z<0 becomes smaller. The strength of the effect is determined by

the value of this property. The low the value the more dramatic is perspective.

On cards I used background-blend-mode and box-decoration-break CSS

properties. The ―background-blend-mode‖ property determines how an

element's background images should blend with each other and with the

element's background color. The ―box-decoration-break‖ CSS property specifies

how an element's fragments should be rendered when broken across multiple

lines, columns, or pages.

This selects everything that

is direct to child
Picture3. Features

 10

Step5. Story section

In the story section I created background video covering an entire section with

the use of <video> element that specifies a standard way to embed a video in a

web page. In my case also was used the object-fit CSS property that specifies

how the contents of a replaced element, such as an or <video>, should be

resized to fit its container.

Also here I implemented the same technic (skew) on story boxes as in features

section. On images applied the shape-outside CSS property which defines a

shape—which may be non-rectangular—around which adjacent inline content

should wrap. By default, inline content wraps around its margin box; shape-

outside provides a way to customize this wrapping, making it possible to wrap

text around complex objects rather than simple boxes.

 11

To achieve effects on images filter was used. The ―filter‖ CSS property lets you

apply graphical effects like blurring or color shifting to an element. Filters are

commonly used to adjust the rendering of images, backgrounds, and borders.

Step6.Book section

In using section I implemented solid-color gradient function instead of adding

new element. Also put a placeholder, saying Full Name and then made it to be

―required‖. So the browser will not allow us to submit the form unless this field

is actually filled out that‘s what the required does. And there is also a type in

HTML5 called email, where the browser will define if we‘re writing in a valid

Email address or not (same with the name). Further I used the ―focus‖ which is

very important for people who use a webpage without a mouse, but only with a

keyboard. So when they move around with a keyboard on the webpage they

need to know which form elements are actually focused. And for accessibility

reasons we should never just do input focus and then set the outline to none, we

should always make the form elements that are focused visible.

We need these 2 formats

to make sure that they

work across all of the

browsers, at least all of the

Picture5. Story section

Graceful degradation concept, even if

a browser doesn‘t support a property

that we want to use on site, then we

can still apply it to the modern

browsers and show a different, simpler

 12

Step7. Footer section

Well I made simple footer, with some effects on texts.

This

effect

applied

on other

Picture7. Footer

 13

Step8.Navigation

Making navigation I animated ―solid-color gradient‖ and for the background of

navigation I used not linear-gradient but new one – radial-gradient. The

difference is that linear gradient goes from one side to the other one while the

radial gradient starts in the middle of an element and goes from there in all the

outside directions basically.

Step10. Popup

And of course not worth to mention that in order popup work we should use

anchor in HTML adding id as we know ID‘s are unique and then id=popup will

become target. For popup I used the :target CSS pseudo-class that represents a

unique element (the target element) with an id matching the URL's fragment.

Then in text column layout that is something really new in CSS but we can

make it work in most of the modern browsers already. The column-count CSS

property break an element‘s content into the specified number of columns. The

column-gap CSS property sets the size of the gap (spacing) between an

element's columns. The column-rule CSS property sets the width, style, and

color of the rule (line) drawn between columns in a multi-column layout. Tried

Picture9. Navigation

Effects applied to others

too using the solid-color

gradient shifting the

background

 14

also to use the hyphens CSS property that specifies how words should be

hyphenated when text wraps across multiple lines. We can prevent hyphenation

entirely, use hyphenation in manually-specified points within the text, or let the

browser automatically insert hyphens where appropriate. So for me in Google

Chrome and other browsers except Firefox it didn‘t work even with the use of

prefix.

Step11. Wrap-ups

After finishing all sections I began to write media queries making responsive

website, considering images as there are crucial part for web performance. Not

worth to mention that media queries I wrote with use of mixins. Also at the

beginning when I started to use rem, I considered to make the entire layout of

the webpage dependent on the font-size. And that‘s a good thing because now in

responsive design I can simply change the font size here and then all of these

measurements in rem, all of them will scale up or down according to this font-

size. So that‘s a huge advantage and time saver, otherwise, if I had everything in

pixels, I should now go ahead and change all of these pixels to smaller numbers.

But with this trick I simply need to increase or decrease the font size here and

 15

then the design will basically shrink. Of course, this will not be enough to make

the page responsive, there‘s a lot of stuff to adjust later on. Next the order of

media queries is also important – always the larger ones before the smaller ones,

which will bring the behavior we expect. After wrapping and writing all queries

we test for browser support and at the end build our project with NPM scripts.

And the most important is that our responsive design won‘t work without

having this meta element in the HTML head <meta name="viewport"

content="width=device-width, initial-scale=1.0">. This tells that our website

should be rendered with the width of the device, so the width of the content

should be the device width. Further on a mobile touch device users do usually

not hover and this means that we can‘t simply identify a touch device by the

width of the screen alone. But good news is that in CSS we can actually write a

media query which can identify if the user can hover over elements or not. And

with that we can easily identify touch devices and non-touch devices, where we

have mouse.

@if is basically makes a test and if the result of this text is true then something happens. So if

the breakpoint is phone then we want something to happen. Well as you see I wrote queries in

mixins then I included them in files, in parts of code where I had problems decreasing or

increasing the screen. And of course ―only screen‖ means that the media query only gets applied

to screens ―and‖ then the max width. So if someone wants to copy the text from our webpage

they‘re not allowed.

The style of selected text

matches to the color of

the text button

 16

Step12. Issues

Developing this project I had many issues especially creating animations. I will

bring few examples related to this. At the end of the project I noticed that when

refreshing the page the navigation list was showing for mili seconds which

wasn‘t so good. The same I had with popup it also was appearing on the header

page while refreshing. The first problem was fixed with @keyframes

fixNavAnim & second took much longer experimenting and changing different

Some snapshots from

testing in small

screens

 17

properties, but it was fixed happily. Also when

something weird happens with animation and

translating stuff the property backface-visibility

helped, as it fixes such issues. And there were a lot of

other stuffs related not only to animations which I

was searching in different sources how to fix it and

sometimes reading developers community Q&A.

Conclusion

In conclusion I can say that overall I reached my goal to show the power of

using CSS only and in some sence this project was experimental as most

modern technics weren‘t supported by all browsers. And in future I hope these

issues will be fixed without using any prefixes or waiting when the old browsers

will be implemented too. So I used top modern browsers(latest versions) of

them. Contrary to popular belief, CSS is not only used to provide basic style for

a web page in order to make it look more attractive. There are plenty of other

things that one can do with CSS as well. With the ability to create animations

and interactions CSS along with HTML allow web developers the opportunity

to play around and experiment with different methods.

 18

References:

 https://developer.mozilla.org/en-US/ (most used)

 https://www.w3schools.com/ (most used)

 http://bennettfeely.com/clippy/

 https://uigradients.com

 https://caniuse.com/ (most used)

 https://sass-guidelin.es

 https://www.valuecoders.com/blog/technology-and-apps/top-15-front-

end-development-tools-2018/

 https://vanseodesign.com/css/sass-directory-structures/

 https://css-tricks.com/snippets/css/media-queries-for-standard-devices/

 https://www.sitepoint.com/css-architecture-block-element-modifier-bem/

 http://getbem.com/introduction/

 https://coverr.co

https://developer.mozilla.org/en-US/
https://www.w3schools.com/
http://bennettfeely.com/clippy/
https://uigradients.com/
https://caniuse.com/
https://sass-guidelin.es/
https://www.valuecoders.com/blog/technology-and-apps/top-15-front-end-development-tools-2018/
https://www.valuecoders.com/blog/technology-and-apps/top-15-front-end-development-tools-2018/
https://vanseodesign.com/css/sass-directory-structures/
https://css-tricks.com/snippets/css/media-queries-for-standard-devices/
https://www.sitepoint.com/css-architecture-block-element-modifier-bem/
http://getbem.com/introduction/
https://coverr.co/

