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Abstract 
 

This thesis presents the solutions to the fuzzified dotted string matching and fuzzified string 

distance problems. These algorithms are modifications of known string matching and string 

distance algorithms. 

For each of the problems two cases are presented. For the fuzzified dotted string matching 

problem the cases are matching a string with a fuzzy pattern and fuzzy matching of a string with 

a pattern. For the fuzzified string distance problem the cases are distance between a string and a 

fuzzy pattern and distance with fuzzy matching. 
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copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License 
and to the absence of any warranty; and give any other recipients of the OC a copy of this 
License along with the OC. You may at your option charge a fee for the media and/or handling 
involved in creating a unique copy of the OC for use offline, you may at your option offer 
instructional support for the OC in exchange for a fee, or you may at your option offer warranty 
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in exchange for a fee. You may not charge a fee for the OC itself. You may not charge a fee for 
the sole service of providing access to and/or use of the OC via a network (e.g. the Internet), 
whether it be via the world wide web, FTP, or any other method.  
 
2. You may modify your copy or copies of the OpenContent or any portion of it, thus forming 
works based on the Content, and distribute such modifications or work under the terms of 
Section 1 above, provided that you also meet all of these conditions:  
 
a) You must cause the modified content to carry prominent notices stating that you changed it, 
the exact nature and content of the changes, and the date of any change.  
 
b) You must cause any work that you distribute or publish, that in whole or in part contains or is 
derived from the OC or any part thereof, to be licensed as a whole at no charge to all third parties 
under the terms of this License, unless otherwise permitted under applicable Fair Use law.  
 
These requirements apply to the modified work as a whole. If identifiable sections of that work 
are not derived from the OC, and can be reasonably considered independent and separate works 
in themselves, then this License, and its terms, do not apply to those sections when you distribute 
them as separate works. But when you distribute the same sections as part of a whole which is a 
work based on the OC, the distribution of the whole must be on the terms of this License, whose 
permissions for other licensees extend to the entire whole, and thus to each and every part 
regardless of who wrote it. Exceptions are made to this requirement to release modified works 
free of charge under this license only in compliance with Fair Use law where applicable.  
 
3. You are not required to accept this License, since you have not signed it. However, nothing 
else grants you permission to copy, distribute or modify the OC. These actions are prohibited by 
law if you do not accept this License. Therefore, by distributing or translating the OC, or by 
deriving works herefrom, you indicate your acceptance of this License to do so, and all its terms 
and conditions for copying, distributing or translating the OC.  
 
NO WARRANTY  
 
4. BECAUSE THE OPENCONTENT (OC) IS LICENSED FREE OF CHARGE, THERE IS NO 
WARRANTY FOR THE OC, TO THE EXTENT PERMITTED BY APPLICABLE LAW. 
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS 
AND/OR OTHER PARTIES PROVIDE THE OC "AS IS" WITHOUT WARRANTY OF ANY 
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE 
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 
PURPOSE. THE ENTIRE RISK OF USE OF THE OC IS WITH YOU. SHOULD THE OC 
PROVE FAULTY, INACCURATE, OR OTHERWISE UNACCEPTABLE YOU ASSUME 
THE COST OF ALL NECESSARY REPAIR OR CORRECTION.  
 
5. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN 
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY 
MIRROR AND/OR REDISTRIBUTE THE OC AS PERMITTED ABOVE, BE LIABLE TO 
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YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR 
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE 
OC, EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE 
POSSIBILITY OF SUCH DAMAGES.  
 
(This license is known as “OpenContent License (OPL)” and can be found at 
http://opencontent.org/opl.shtml) 
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Introduction 

 

The algorithms presented in this thesis use the dynamic programming approach. 

The algorithms presented in this thesis can be viewed as approximate string matching algorithms. 

Even though well known approximate string matching algorithms are sometimes called fuzzy 

string matching algorithms, they work with exact strings and exact matching. The algorithms 

presented in this thesis work with fuzzy patterns (patterns consisting of values of linguistic 

variables) and fuzzy matching. 

Some of the common applications of these kind of algorithms are text searching, text editing, 

spell checking, context search, querying specific rows from a database, data compression, spam 

filtering and others.  

In recent years the importance and usability of algorithms like these grew in biology (matching 

of nucleotide sequences). 
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Chapter 1 

Known algorithms  

 

In this chapter we will discuss already well known exact string matching algorithms. Some of the 

fuzzy string matching and fuzzy string distance algorithms that will be presented in later chapters 

are modifications of these exact algorithms. 

 

1.1 Longest common subsequence [1] 

 

Given two sequences X and Y , we say that a sequence Z is a common subsequence of X and Y 

if Z is a subsequence of both X and Y . For example, if X = ⟨A, B, C, B, D, A, B⟩ and Y = ⟨B, D, 

C, A, B, A⟩, the sequence ⟨B, C, A⟩ is a common subsequence of both X and Y . The sequence 

⟨B, C, A⟩ is not a longest common subsequence (LCS) of X and Y , however, since it has length 

3 and the sequence ⟨B, C, B, A⟩, which is also common to both X and Y , has length 4. The 

sequence ⟨B, C, B, A⟩ is an LCS of X and Y , as is the sequence ⟨B, D, A, B⟩, since X and Y 

have no common subsequence of length 5 or greater. 

In the ​longest-common-subsequence​ problem, we are given two sequences X=⟨x​1​,x​2​,...,x​m​⟩ and 

Y=⟨y​1​,y​2​,...,y​n​⟩ and wish to find a maximum length common subsequence of X and Y. 

 

Characterizing a longest common subsequence 

 

The LCS problem has an optimal-substructure property, however, as the following theorem 

shows. As we shall see, the natural classes of subproblems correspond to pairs of “prefixes” of 

the two input sequences. To be precise, given a sequence X=⟨x​1​,x​2​,...,x​m​⟩, we define the ith ​prefix 

of X, for i = 0,1,...,m, as X​i​=⟨x​1​,x​2​,...,x​i​⟩. For example, if X = ⟨A, B, C, B, D, A, B⟩ , then X​4​ = 

⟨A, B, C, B⟩  and X​0​ is the empty sequence. 
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Theorem (Optimal substructure of an LCS) 

Let X=⟨x​1​,x​2​,...,x​m​⟩ and Y=⟨y​1​,y​2​,...,y​n​⟩ be sequences, and let Z=⟨z​1​,z​2​,...,z​k​⟩ be any LCS of X and 

Y .  

1. If x​m​ = y​n​, then z​k​ =  x​m​ = y​n​ and Z​k-1​ is an LCS of X​m-1​ and Y​n-1​.  

2. If x​m​ ≠ y​n​, then z​k​ ≠  x​m​ implies that Z is an LCS of X​m-1​ and Y.  

3. If x​m​ ≠ y​n​, then z​k​ ≠ y​n​ implies that Z is an LCS of X and Y​n-1​.  

 

The way that Theorem characterizes longest common subsequences tells us that an LCS of two 

sequences contains within it an LCS of prefixes of the two sequences. Thus, the LCS problem 

has an optimal-substructure property. A recursive solution also has the overlapping-subproblems 

property. 

 

 A recursive solution 

 

To find an LCS of X and Y , we may need to find the LCSs of X and Y​n-1​ and of X​m-1​ and Y . But 

each of these subproblems has the subsubproblem of finding an LCS of X​m-1​ and Y​n-1​. Many 

other subproblems share subsubproblems. 

 

As in the matrix-chain multiplication problem, our recursive solution to the LCS problem 

involves establishing a recurrence for the value of an optimal solution. Let us define c[i,j], j to be 

the length of an LCS of the sequences X​i​ and Y​j​ . If either i = 0 or j = 0, one of the sequences has 

length 0, and so the LCS has length 0. The optimal substructure of the LCS problem gives the 

recursive formula 

 

0 if i=0 or j=0 

c[i,j] = c[i-1,j-1]+1 if i,j>0 and x​i​ = y​j (1) 

max(c[i,j-1],c[i-1,j]) if i,j>0 and x​i​ ≠ y​j  
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Computing the length of an LCS 

 

Based on equation (1), we could easily write an exponential-time recursive algorithm to compute 

the length of an LCS of two sequences. Since the LCS problem has only 𝚯(mn) distinct 

subproblems, however, we can use dynamic programming to compute the solutions bottom up. 

 

Procedure LCS-LENGTH takes two sequences X=⟨x​1​,x​2​,...,x​m​⟩ and Y=⟨y​1​,y​2​,...,y​n​⟩ as inputs. It 

stores the c[i,j] values in a table c[0..m,0..n], and it computes the entries in ​row-major​ order. 

(That is, the procedure fills in the first row of c from left to right, then the second row, and so 

on.) The procedure also maintains the table b[1..m,1..n] to help us construct an optimal solution. 

Intuitively, b[i,j] points to the table entry corresponding to the optimal subproblem solution 

chosen when computing c[i,j] . The procedure returns the b and c tables; c[m,n] contains the 

length of an LCS of X and Y . 

 

LCS-LENGTH(X, Y) 

1   m=X.length 

2   n=Y.length 

3   let b[1..m,1..n] and c[0..m,0..n] be new tables 

4   for i = 1 to m 

5 c[i,0] = 0 

6   for j = 0 to n 

7 c[0,j] = 0 

8   for i = 1 to m 

9 for j = 1 to n 

10      if x​i​ == y​j 

11 c[i,j] = c[i-1,j-1] + 1 

12 b[i,j] = “⬉” 

13      elseif c[i-1,j] ⋝ c[i,j-1] 

14 c[i,j] = c[i-1,j] 
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15 b[i,j] = “⬆” 

16     else c[i,j] = c[i,j-1] 

17  b[i,j] = “⬅” 

18   return c and b 

 

Constructing an LCS 

 

The b table returned by LCS-LENGTH enables us to quickly construct an LCS of X=⟨x​1​,x​2​,...,x​m​⟩ 

and Y=⟨y​1​,y​2​,...,y​n​⟩. We simply begin at b[m,n] and trace through the table by following the 

arrows. Whenever we encounter a “-” in entry b[i,j], it implies that x​i​ = y​j​ is an element of the 

LCS that LCS-LENGTH found. With this method, we encounter the elements of this LCS in 

reverse order. The following recursive procedure prints out an LCS of X and Y in the proper, 

forward order. The initial call is PRINT-LCS(b, X, X.length, Y.length). 

 

PRINT-LCS(b,X,i,j) 

1   if i == 0 or j == 0 

2   return 

3   if b[i,j] == “⬉” 

4   PRINT-LCS(b,X,i-1,j-1) 

5   print x​i 

6   elseif b[i,j] = “⬆” 

7   PRINT-LCS(b,X,i-1,j) 

8   else PRINT-LCS(b,X,i,j-1) 
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1.2 String Distance Algorithms [2] 

 

The algorithm discussed below will apply uniformly to each of three kinds of distances: 

Levenshtein (d​L​), edit (d​E​) and weighted (d​W​) distances, we will denote distance simply ​by d. 

Then we can express the properties of d in terms of edit operations performed on single 

(nonemply) letters 𝜆 and 𝜇: 

● (insert: replace 𝜀 by 𝜆) d(𝜀,𝜆) > 0; 

● (delete: replace 𝜆 by 𝜀) d(𝜆,𝜀) >0; 

● (substitute: replace 𝜆 by 𝜇) d(𝜆,𝜇) > 0 iff 𝜆 ≠ 𝜇; 

 

For d = d​L​ or d​E​, d(𝜆,𝜀) = d(𝜀,𝜆) = 1 for all 𝜆; while for d = d​L​, d(𝜆,𝜀) = 2 and for d = d​E​, 

d(𝜆,𝜇) = 1. 

Observe that each single-letter distance may also be thought of as the ​cost​ of performing 

the corresponding edit operation: more generally, we think of the distance between two strings as 

the minimum cost of transforming one string into the other. 

The algorithm presented here is a dynamic-programming algorithm, that is, it compares 

the input strings x​1​ = x​1​[1..n​1​] and x​2​ = x​2​[1..n​2​] from left to right, computing for each pair of 

positions i and j the minimum cost of transforming  x​1​[1..i] to x​2​ = x​2​[1..j] based on the 

already-computed minimum costs 

● d(x​1​[1..i], x​2​[1..j-1]) 

● d(x​1​[1..i-1], x​2​[1..j]) 

● d(x​1​[1..i-1], x​2​[1..j-1]) 

This basic recurrence is explained below. 

It is convenient to introduce two-dimensional ​cost array ​c=c[0..n​1​,0..n​2​] in which 

c[i,j] = d(x​1​[1..i], x​2​[1..j]) 

for every i ∈ 0..n​1​, j ∈ 0..n​2​ with initial values defined as follows: 

● c[0,0] = 0, the minimum cost of transforming the empty string into itself; 

11 



● C[0,j] = d(𝜀,x​2​[h]), the minimum cost of inserting the first j letters of x​2​ into the∑
 

1≤h≤j
 

empty string; 

● C[i,0] = d(x​1​[h],𝜀), the minimum cost of deleting the first i letters of x​1​ into the∑
 

1≤h≤i
 

empty string. 

 

Lemma 

For every  i ∈ 0..n​1​, j ∈ 0..n​2 

c[i,j] = min{ c[i-1,j] + d(x​1​[i],𝜀), c[i,j-1] + d(𝜀,x​2​[h]), c[i-1,j-1] + d(x​1​[i],x​2​[h]) } 

 

The critical factor in the proof of this lemma is the inserts and deletes can be performed in any 

order. This property of the inserts and deletes does not depend on the Symmetry Property of the 

metric; that is, it held even if, for some strings x​1​ and x​2​,  

d(x​1​,x​2​) ≠ d(x​2​,x​1​) 

 

Consequently, Lemma holds even if the Symmetry Property does not. This observation makes it 

clear that cost need not be quite the same thing as distance: since we have defined cost in terms 

of transferring x​1​ into x​2​, it is possible to imagine that the cost of transferring x​2​ into x​1​ may not 

be the same. 

Finally, we remark that the cost array and the recurrence scheme for computing it given 

by Lemma are very simple and natural ideas with widespread consequences: not 

only does the recurrence form the basis of distance (hence LCS) calculations, it is also 

fundamental to almost all approaches to the calculation of the shortest common superstring of a 

collection of strings, and to the "best" alignment of a collection of strings. 
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Chapter 2 

Fuzzy set theory. The Concept of a Linguistic Variable  

 

2.1 Fuzzy set theory 

Fuzzy logic 

Fuzzy logic is a form of many-valued logic in which the truth values of the variables may be any 

real number between 0 and 1. ​ It is employed to handle the concept of partial truth, where the 

truth value may range between completely true and completely false [5]. In Boolean logic, the 

truth value can be only completely true or completely false: 1 or 0.  

Fuzzy Sets 

A fuzzy set is a set whose elements have grades of membership. It is characterized by a 

membership function which assigns each element a grade of membership ranging between 0 and 

1. [3] 

A fuzzy subset ​A​ of a universe of discourse ​U ​(a finite or infinite set) is characterized by a 

membership function​  which associates with each element ​u​ of ​U​ a number ,  0, ]μA : U → [ 1  

 in the interval [0,1], with  representing the ​grade of membership​ of ​u​ in ​A​. The(u)μA (u)μA  

support​ of A is the set of points in ​U​ at which  is positive. The ​height​ of ​A​ is the supremum(u)μA  

of   over ​U​. A ​crossover point​ of ​A​ is a point in ​U​ whose grade of membership in ​A​ is 0.5.(u)μA  

[4] 

Example: Let the universe of discourse be the interval (-∞, ∞), with ​u​ interpreted as ​temperature​. 

A fuzzy subset of ​U​ labeled ​high​ may be defined by a membership function such as  

 (u)μA = 0  for ​u ​≤ 20 

(u) x 0)/20 μA = ( − 2 for 20 ≤ ​u ​≤ 40 

                     for ​u ​> 40(u)μA = 1  
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The support of high is [20,∞), the height is 1, the crossover point is 30. 

 

Operations on fuzzy sets   ​[4] 

When the support of a fuzzy set is a continuum rather than a countable or a finite set, we shall 

write: 

(u)/uA = ∫
 

U
μA  

with the understanding that  is the grade of membership of u in ​A​, and the integral denotesA(u)μ  

the union of the fuzzy singletons , ​u​∈​U​.(u)/uμA   

There are many operations that can be done of fuzzy sets.We are going to discuss ​compliment 

and ​fuzzification. 

Compliment 

The ​complement​ of ​A​ is denoted by ¬​A​ (or sometimes by ​A’​) and is 

defined by 

A [1 (u)]/u¬ = ∫
 

U
− μA  

The operation of complementation corresponds to negation. Thus, if ​A​ is a label for a fuzzy set, 

then not A would be interpreted as ¬​A​. 

Fuzzification 

The operation of ​fuzzification​ has, in general, the effect of transforming a nonfuzzy set into a 

fuzzy set or increasing the fuzziness of a fuzzy set. Thus, a ​fuzzifier​ ​F​ applied to a fuzzy subset ​A 

of ​U​ yields a fuzzy subset ​F(A;K)​ which is expressed by  

 (A; ) (u)K(u)F K = ∫
 

U
μA  
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Where the fuzzy  is the ​kernel​ of ​F​, that is, the result of applying ​F​ to a singleton 1/​u​:(u)K   

;(u) F (1/u; )K =  K  

represents the product of a scalar and the fuzzy set ; and is the union of(u)K(u)μA (u)μA (u)K ∫
 

 
 

the family of fuzzy sets , ​u​∈​U .(u)K(u)μA  

The operation of fuzzification plays an important role in the definition of linguistic hedges such 

as ​more or less​, ​slightly​, ​somewhat​, ​much​, etc.  

 

2.2 Linguistic Variable 

 

Linguistic variables are variables whose values are words or sentences in a natural or artificial 

language.[4] 

For example, ​Temperature ​is a linguistic variable if its values are linguistic, i.e., high, very high, 

low, not low, extremely high, not very low, etc., rather than numeric, 40, 46, -10, 7, 78, 2, etc. 

Linguistic variable is characterized by a quintuple (​L​, ​T​(​L​), ​U​, ​G​, ​M​) in which ​L​ is the name of 

the variable; ​T​(​L​) is the term-set of ​L​ , that is, the collection of its linguistic values; ​U​ is a 

universe of discourse; ​G​ is a syntactic rule which generates the terms in ​T​(​L​); and ​M ​is a 

semantic rule which associates with each linguistic value X its meaning, ​M​(X), where ​M​(X) 

denotes a fuzzy subset of ​U​. The meaning of a linguistic value X is characterized by a 

compatibility function,  which associates with each ​u ​in ​U​ its compatibility with  0, ]c : U → [ 1  

X. [4] So the compatibility of 28 degrees with ​high​ might be 0,4, while that of 34 might 0,7.  

The function of the semantic rule is to relate the compatibilities of the so-called ​primary​ terms in 

a composite linguistic value, e.g., ​low​ and ​high​ in ​not very low​ and ​very high,​ to the 

compatibility of the composite value. To this end, the hedges such as ​very​, ​quite​, ​extremely​, etc., 

as well as the connectives ​and​ and ​or​ are treated as nonlinear operators which modify the 
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meaning of their operands in a specified fashion.[4]  Those hedges are sometimes also called 

modifiers 
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Chapter 3 

Fuzzyfied string dotted matching 

 

3.1 Matching a string with a fuzzy pattern 

 

Problem definition:​ We have a string of length n and a pattern of length m. The pattern is 

comprised of linguistic variable values. We need to find if the sting is dotted matched to the 

pattern with a degree of membership that is greater than a given threshold T.  

 

The degree of membership of string to the pattern is the multiplication of the degrees of 

membership of the matched elements from the string to the pattern. 

 

We are given a sequences A=⟨a​1​,a​2​,...,a​n​⟩ and pattern of values of linguistic variables 

B=⟨b​1​,b​2​,...,b​m​⟩. The number of values of this linguistic variable is k.  

 

This problem can be view as a special case of the longest common subsequence problem. 

 

We take a matrix matrix[n][m].  Every element of the matrix holds a reference to an array. The 
length of the arrays are distributed like this​ : 
 
 
 
 

1 1 1 ... 1 

1 2 2 ... 2 

1 2 3 ... 3 

1 2 3 ... 4 

: : :   

1 2 3 ... m 
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We can’t unequivocally say if an element should be in the final matching subsequence of A or 
not we need to keep history of different paths we can take. This history is kept in these arrays.  
 
The elements of the array are a structure that hold weight (the degree of membership) and 
direction (to help us construct an optimal solution). The direction points to the table entry 
corresponding to the optimal subproblem solution chosen when computing the weight. So we 
keep the path of each choice. 
 
 
This is of how the arrays are filled: 
 

        1       if i=0 and h=0,or j=0 and h=0 
        m[i-1][j-1][h-1].w*weight(a[i],b[j])             if i=j=h and i,j>0 
        max(m[i-1][j][h].w,m[i][j-1][h].w,m[i-1][j-1][h-1].w*weight(a[i],b[j]) 

        if i<=j,h<j and i,j<0 
m[i][j][h].weight=        or i>=j,h<i and i,j<0

        max(m[i-1][j][h].w,m[i-1][j-1][h-1].w*weight(a[i],b[j])  
       if i>j,h>=i and i,j<0 

       max(m[i][j-1][h].w,m[i-1][j-1][h-1].w*weight(a[i],b[j])  
       if i<j,h>=j and i,j<0 

 
 
 
If we take m[i-1][j][h], m[i][j][h].dir = ‘⬆’, if we take m[i][j-1][h] m[i][j][h].dir = ‘⬅’, else 
‘⬉’. 
This way the array referenced in the element matrix[n][m] holds the max weights of substrings 
of each length : matrix[n][m][i] holds the max value of a subarray of length i, and the end of its 
path. As we need to have match with every element of the pattern, we will take the 
matrix[n][m][m] element of the matrix,that holds the degree of membership of the best matching 
substring of A to the pattern B, so if the T ≤  matrix[n][m][m], we say that the string A  dotted 
matches the fuzzy pattern B, if T >  matrix[n][m][m] we say that there is no match.  
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Example.  
 
We have 2 sequences. The number sequence is 2,2,4,1.The pattern is small,large,small.  

 

  small large small 

 1 1 1 1 

2 1 1  ↖  0,75 1  ←  0,75 1  ↖  0,75 

2 1 1  ​↖​  0,75 1  ←  0,75 
2  ↖  0,1875  

1  ←  0,75 
2  ↖  0,5675  

4 1 1  ↑  0,75 1 ↖   0,75 
2  ​↖​  0,5675 

1  ←  0,75 
2  ↑  0,5675  

3  ↖  0,046875 

1 1 1  ↖  1 1  ←  1 
2  ↑   0,5675 

1  ← 1 
2  ↖  0,75  

3  ​↖​  0,5675 

 
 

In the first line and first column we have and 1 element array. In the matrix[1][1] we have  
[1  ↖  0,75] .The 1 shows that the length of the subsequence is 1.  ↖ is the direction and 0.75 is the 
degree of membership of 2 to small. Matrix[3][2] has an array with elements  
{[1  ←  0,75],[2  ↖  0,5675]}. In [1  ←  0,75],1 is the length of the subsequence, 0,75 is from 
max(weight(4,large), matrix[3][1][1].weight, matrix[2][2][1].weight). The  ↖ shows that we took 
the max(weight(4,large). In [2  ↖  0,5675]: 2 is the length of the subsequence, 0,5675 is from  
max(weight(4,large)*matrix[2][1][1].weight, matrix[2][2][1].weight).  
The  ↖ shows that we took the weight(4,large)*matrix[2][1][1].weight.  
The matrix[4][3] hold the reference to the array {[1  ←  1],[2  ↖  0,75],[3  ↖  0,5675]} which 
means that the maximum degree of membership of the 3 element subsequence is 0,5675, 2 
element subsequence is 0,75 and of the 1 element subsequence is 1. You can see how we get the 
elements of the subsequences following the highlighted arrows, the blue for 3, green for 2 and 
red for 1 element subsequences. We follow the arrows and take the element that have the arrow 
↖.When we have taken as many elements as the length of subsequence we are looking for. 
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3.2: Fuzzy matching of a string with a pattern 
 
Problem definition:​ We are given the string A=⟨a​1​,a​2​,...,a​n​⟩ and the pattern B=⟨b​1​,b​2​,...,b​m​⟩ that 
have exact values. We need to mention that the elements of A and B must be from the the 
universe of discourse of the same linguistic variable: a​i​ ∈ U for ∀i  = 1..n and  b​j​ ∈ U for ∀j 
= 1..m. Every element of U has a corresponding threshold. We need to find if the string A is 
dotted, fuzzy matched to the pattern B so that every element of A is matched to B with the 
threshold greater than or equal to the corresponding threshold T(a). 
 
Now let’s clarify how the fuzzy matching works: 
We consider a​i​ and b​j​ a match, when a​i​ and b​j​ match the same value of the linguistic variable, and 
the difference in the degrees of membership of a​i​ and b​j​ to this value is smaller than or equal to 
the given corresponding threshold T(a​i​).  
 
Example: ​We have a​i​ = 2, b​j​ = 1, T(a​i​) = 0,5. The linguistic variable is ​size​.  
𝛍 ​small​(​a​i​)= 0.75 ​𝛍 ​small​(​b​j​)= 1   |​𝛍 ​small​(​a​i​) - ​𝛍​smalll​(​b​j​)| = 0,25 ≤ 0,5 =>  ​a​i​ and b​j​  match. 

 
This is also a special case of the longest common subsequence problem. The algorithm in this 
case is the same as in case of the general LCS, the only difference being the matching.  
 
If in case of the general LCS we say that we have a match between i​th​ element of A and  j​th 
element of B when a​i​ == b​j​, in this case we have fuzzy matching.  
 
FLCS-LENGTH(A, B) 

1   n=A.length 

2   m=B.length 

3   let b[1..n,1..m] and c[0..n,0..m] be new tables 

4   for i = 1 to n 

5 c[i,0] = 0 

6   for j = 0 to m 

7 c[0,j] = 0 

8   for i = 1 to n 

9 for j = 1 to m 

10      if FUZZY_MATCH(a​i​, b​j​,T(a​i​))  
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11 c[i,j] = c[i-1,j-1] + 1 

12 b[i,j] = “⬉” 

13      elseif c[i-1,j] ⋝ c[i,j-1] 

14 c[i,j] = c[i-1,j] 

15 b[i,j] = “⬆” 

16     else c[i,j] = c[i,j-1] 

17  b[i,j] = “⬅” 

18   return c and b 

 

U has n elements. The linguistic variable has k values. 

The degrees of membership of each element of the universal set (U) to each value of the 

linguistic variable will be stores in a matrix dm[k][n]. If the elements of U are not integers we 

will also have an array of strings (elements of U) u[n], to know which value corresponds to 

which column in dm[k][n]. 

 

FUZZY_MATCH(x, y, T) 

1   for i = 1 to n 

2 if u[i] == x 

3    nx = i 

4 if u[i] == y 

5    ny = i \\ don’t need 1 to 5 if the elements of U are integers 

6   for i = 1 to k 

7 if (absolute(dm[i][nx] - dm[i][ny]) < T) 

8     return true 

9   return false 

 

Constructing the LCS will be the same as in the general LCS algorithm. 
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Chapter 4 

Fuzzified string distance 

 

4.1 ​Distance between a string and a fuzzy pattern 

 

For this case the String Distance algorithm will be the same as the general String Distance 

algorithm, with one difference. We are given a threshold T and we need to set the distance 

between the linguistic variable value and the exact string element to 0 when the degree of the 

membership of the exact string element to the linguistic variable value is greater than or equal to 

the threshold. 

So the only difference in the algorithm will be in the properties of d in terms of subtitute 

operations performed on single (nonemply) letters 𝜆 and 𝜏: 

● (insert: replace 𝜀 by 𝜆) d(𝜀,𝜆) > 0; 

● (delete: replace 𝜆 by 𝜀) d(𝜆,𝜀) >0; 

● (substitute: replace 𝜆 by 𝜏) d(𝜆,𝜏) > 0 iff ​𝛍​𝜏​(​𝜆​)​≥T 

Every other part of the algorithm is the same as in the general string distance algorithm. 

 

4.2 String Distance with fuzzy matching 
In this case, again, the String Distance algorithm will be the same as the general String Distance 

algorithm, with one difference. We are given a threshold T(u) for every element of U (the 

universy of discourse both the string and the pattern belong to) and we need to set the distance 

between the exact string elements to 0 when between the 2 elements there is a fuzzy match. The 

FUZZY_MATCH(𝜆, 𝜇, T(𝜆)) is the same as in the previous chapter. 

So the only difference in the algorithm will be in the properties of d in terms of edit operations 

performed on single (nonemply) letters 𝜆 and 𝜇: 

● (insert: replace 𝜀 by 𝜆) d(𝜀,𝜆) > 0; 

● (delete: replace 𝜆 by 𝜀) d(𝜆,𝜀) >0; 

● (substitute: replace 𝜆 by 𝜇) d(𝜆,𝜇) > 0 iff FUZZY_MATCH(𝜆, 𝜇, T(𝜆)) 

Every other part of the algorithm is the same as in the general string distance algorithm. 
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Conclusion 

 

In this thesis four algorithms on two topics were presented. All of this algorithms were specific 

cases of approximate string matching problem.  

The algorithms presented in this thesis can be viewed as modifications of the longest common 

subsequence and string distance algorithms using fuzzy set theory and the concept of linguistic 

variables. All of the algorithms were using the dynamic programming approach.  

23 



References 

[1] Cormen, Thomas H., Charles Eric Leiserson, and Ronald L. Rivest. Introduction to 

Algorithms. 3rd ed. Cambridge, Mass. : MIT Press, 2009. 

[2] Smyth W. Computing Patterns in Strings. Pearson/Addison-Wesley, 2003 

[3] ​L. A. Zadeh, "Fuzzy sets," ​Information and Control​, vol. 8, no. 3, pp. 338-353, June 1965. 

[4] ​L. A. Zadeh, "The concept of a linguistic variable and its application to approximate 

reasoning - I," Information Sciences, vol. 8, no. 3, pp. 199-249, July 1975. 

[5] ​Novák, V., Perfilieva, I. and Močkoř, J., “Mathematical Principles of Fuzzy Logic”, Kluwer 

Academic Publishers 1999.Print 

[6] A. Kostanyan. Fuzzy String Matching with Finite Automata, in Proceedings on 2017 IEEE 

Conference "2017 Computer Science and Information Technologies" (CSIT), Yerevan, Armenia, 

25-29 Sep., 2017, IEEE Press, USA, 2018, pp. 9 - 11. 

 

24 


