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Abstract 
 
Robust Principal Component Analysis 
 
Author:  Arshak Minasyan 
 
One of the most famous dimensionality reduction methods is Principal Component 
Analysis (PCA), which is successfully used worldwide. However this method is sensitive 
to outliers and hence a few number of them cause bias in the resulting subspace. There 
are a number of techniques now for the robustification of PCA, but we stick to the 
version introduced in [ 30 ]. The numerical technique for optimization in [ 30 ] relied on 
Iteratively Reweighted Least Squares (IRLS) method. In the present paper we adopted 
the Conjugate Gradient Descent algorithm with orthogonal matrix constraints from [ 18 ] 
for solving the nonconvex matrix optimization problem. We discuss the arising 
computational and convergence problems and compare effectiveness of the methods. 
 
Keywords:  Robustness, Principal component analysis, nonconvex optimization, Stiefel 
manifold, Iteratively reweighted least squares, Conjugate gradient,  Orthogonal matrices. 
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Abstract One of the most famous dimensionality reduction methods is Prin-
cipal Component Analysis (PCA), which is successfully used worldwide. How-
ever this method is sensitive to outliers and hence a few number of them cause
bias in the resulting subspace. There are a number of techniques now for the
robustification of PCA, but we stick to the version introduced in [30]. The
numerical technique for optimization in [30] relied on Iteratively Re-weighted
Least Squares (IRLS) method. In the present paper we adopted the Conju-
gate Gradient Descent algorithm with orthogonal matrix constraints from [18]
for solving the non-convex matrix optimization problem. We discuss the aris-
ing computational and convergence problems and compare effectiveness of the
methods.

Keywords Robustness · Principal component analysis · Nonconvex opti-
mization · Stiefel manifold · Iteratively reweighted least squares · Conjugate
gradient · Orthogonal matrices

1 Introduction

The general problem of data analysis in high dimensions is arising in many
fields, such as computer vision [33], [26], signal processing in medicine [10], [11],
etc. In some situations there is an underlying structure of high-dimensional
data, i.e. there is a low-rank approximation Xlow-rank ∈ RN×d of initial data
X ∈ RN×D, where d is the dimension of low-dimensional space with d � D.
Here N is the number of observations and D — dimension of each observation,
D � 1. The standard method of finding such structures is known as princi-
pal component analysis (PCA) and was pioneered by Pearson [29], see [22].
PCA is the simplest method of dimensionality reduction, since it only requires
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computation of the first few singular values of the matrix X. First d princi-
pal components form a d-dimensional subspace to where the data points are
projected. Computing singular values can be done effectively as indicated in
[31], [23], [20], [4]. LAPACK [3] provides a number of methods for computing
singular values. The choice of d is discussed in review paper [1], in references
therein and in recent paper [14].

It is a well-known fact that PCA is sensitive to outliers. The term ”robust-
ness” was first introduced by G. Box [6] in 1953. The monograph [21] of Paul
Huber in 1981 had a great impact on modern statistics and developed robust-
ness theory. The question of constructing a robust method of dimensionality
reduction has been discussed recently, see [9], [38], [15], [24], [25], [36], [37]. In
this work we discuss the same ”robust” setup as described in [30] and relying
on Huber’s approach. This approach differs from the ones mentioned before
and is based on constructing a matrix optimization problem the solution of
which gives the ”robust” low-dimensional space. The objective function is itself
smooth and convex, however the constraints (XTX = Ip) are non-convex.

Being sensitive to outliers in this setup means that significant principal
components will be rotated provided even small number of outliers. For the
simplicity of illustrations of this phenomenon we manually generate data points
with underlying structure (a line segment) then add a few outliers laying far
from it. We expect from the robust method to ignore the outliers and find the
direction of the line as the first principal component’s direction. The standard
PCA would not get the direction right because of existing outliers.

The following figure illustrates the robustness of Huber function defined
by (3). In the first plot one can see how the principal components are affected
by outliers and the eigenvector’s directions are rotated, while in the second
plot with Huber loss function the first principal components have the correct
direction figuring out the direction of the line and ignoring the outliers.
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During last few decades there are many methods developed for handling the
optimization problems with orthogonal matrix constraints. To name just a few
of them see [18], [2], [19], [5], [35]. One of the important parts of this work
are numerical experiments aimed to solve optimization problems with smooth
convex functions and orthogonal constraints. The conjugate gradient method
on Stiefel manifold adopted for [18] is taken as the basic one. The results were
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compared with method of IRLS used to solve the problem of robust PCA in
[30] for different datasets.

The structure of the paper is the following. Section 2 describes the ”robust”
approach based on Huber loss function. The optimization methods for solving
the proposed problem from Section 2 are collected in Section 3. Section 4
contains a number of examples where these methods can be applied with
careful analysis of their convergence, time complexity and accuracy. Section 5
sums up previous sections and contains several concluding remarks.

Notation. Throughout the paper the following notation is used. R denotes
the set of real numbers. For a vector v ∈ Rn we denote `p norm: ‖v‖p :=

(
∑n
i=1 v

p
i )

1/p
, p = 2 is known as the Euclidean norm. Denote Mn,m as a set of

all real matrices of size n×m and Sn the set of all symmetric matrices of size
n×n. We use superscript ·k for the optimizing variable to be a variable value at
iteration k. The standard scalar product 〈·, ·〉E with matrix entries is defined by
〈A,B〉E = tr

(
ATB

)
which is also known as Frobenius inner product. As for

the canonical metric on Stiefel manifold define 〈A,B〉S = trAT (I− 1
2XX

T )B,
where X is the point on manifold St(X) = {X ∈Mn,k : XTX = Ik} at which
the inner product is computed. The Frobenius norm of matrix A ∈ Mm,n is

given by ‖A‖F =
√∑m

i=1

∑n
j=1 a

2
ij =

√
trATA.

2 Robust Principal Component Analysis

The problem of constructing robust version for the PCA is studied a lot re-
cently and a number of techniques are available [9], [38], [15], [24], [25], [36],
[37]. However, in this work we mainly concentrate on the robust version of
PCA first introduced by B. Polyak and M. Khlebnikov [30].

For getting started assume a cluster of points X = {X1, . . . , XN}, where
each observation Xi ∈ RD, where D � 1. The aim is to find the lower-
dimensional structure of initial cluster X . The standard PCA method com-
putes the first d eigenvectors of the sample covariance matrix Σ̂ defined as

Σ̂ =
1

N

N∑
i=1

(Xi −X)(Xi −X)T , X =
1

N

N∑
i=1

Xi.

The first d� D eigenvectors span the subspace to where the pointsX1, . . . , XN

are projected to. Formally,

Σ̂vi = λivi, i = 1, . . . , d.

and the lower dimensional subspace is Π = span{v1, . . . , vd} and vi are called
the principal compoenents.

Finding the principal components can be done by finding the solution of an
optimization problem which aimed to minimize the sum of squared distances
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between given cluster points X and the hyperplane Cx = b, where C ∈ Rd×D

and b ∈ R. Hence we want to find such b and C such that the

N∑
i=1

‖CXi − b‖22

is the least possible. However, one can easily note that taking b = 0 and
C = 0 (i.e., zero-vector(matrix) in their corresponding dimensions) leads to
the sum of 0, which is the least possible but contains no information about the
lower-dimensional structure of X . This brings us to the following optimization
problem

min
b,CCT=I

N∑
i=1

‖CXi − b‖22. (1)

It is known (see e.g. [30]) that the minimum of problem (1) is achieved for

b∗ = C∗X, C∗ =


vT(D)

vT(D−1)
. . .

vT(D−d+1)

 , (2)

where v(i)s are the normalized eigenvectors of matrix Σ̂ associated with the
i-th largest in absolute value eigenvalue, namely v(D) = vmin. This yields the
hyperplane orthogonal to Π.

We note that the problem (1) is non-convex in general. However, due to `2
norm there is a closed-form solution of (1).

However, `2 norm has its drawbacks, namely the associated loss function
is very sensitive to outliers. That is, it tries to fit all the points equivalently
and a single outlier can possibly make the fitting model neglect the underlying
structure of other points. This is the main issue with standard PCA.

The ”robustified” version of optimization problem (1) can be obtained
using the robustness of `1 norm and easiness of `2 norm expressed through the
Huber function defined as

h(x) =

{
x2/2, if |x| < δ

δ|x| − δ2/2, if |x| ≥ δ
(3)

and the corresponding optimization problem reads as follows

min
b,CCT=I

N∑
i=1

h(‖CXi − b‖2). (4)

The brief description of algorithm of iteratively reweighted least squares
which was used in [30] to solve (4) can be found below. The origin of this
algorithm goes back to E. Weiszfeld [34] who first introduced this method for
solving Fermat-Weber problem [7].
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The initial step of the algorithm for solving (4) is the standard PCA step,
i.e. taking

X
0

=
1

N

N∑
i=1

Xi, Σ0 =
1

N

N∑
i=1

(Xi −X
0
)(Xi −X

0
)T

yields the values of C1 and b1 as follows

C1 =


uT(D)

uT(D−1)
. . .

uT(D−d+1)

 , b1 = C1X
0
, (5)

where u(i) is the normalized eigenvector of Σ0 associated with the i-th largest
in absolute value eigenvalue.

In the k-th iteration take

wik = min

{
1,

δ

‖CkXi − bk‖2

}
. (6)

Then, update

X
k

=

∑N
i=1Xiwik∑N
i=1 wik

, Σk =

∑N
i=1 wik(Xi −X

k
)(Xi −X

k
)T∑N

i=1 wik

and compute the eigenvectors of matrix Σk for updating variables Ck and bk

according to (2). Repeat updating X
k

and Σk until convergence.
If function h(x) differs from (3) but remains symmetric, differentiable and

convex, weights wik are calculated as

wik =
h′(εik)

εik
, εik = ‖CkXi − bk‖2 (7)

instead of (6).
Further details related IRLS algorihm can be found in [30].

3 Minimization on Stiefel manifold

This section contains an optimization algorithm adopted from [18]. It also con-
tains preliminaries on Stiefel manifold as well as facts on which the conjugate
gradient algorithm mainly relies.

The aim of this section is to describe a method for solving the optimization
problem

min
XTX=I

F (X), (8)

where F is smooth and convex in X ∈ Mn,p. We remind that F (X) is dif-
ferentiable means that F (X + ∆) = F (X) + 〈FX , ∆〉 + o(∆) with standard
Frobenius matrix product 〈., .〉 and FX ∈Mn,p.
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Define the Stiefel manifold as follows Stn,p = {X ∈ Mn,p : XTX = Ip}.
The two important special cases of Stiefel manifold are sphere Sn−1 in Rn

when p = 1 and On the group of all invertible matrices with unit determinant
for the case of p = n. On is also known as orthogonal group.

The canonical inner product of Stiefel manifold reads as

〈A,B〉S = trAT (I − 1

2
XXT )B, (9)

which is dependent on the point of manifold X where the scalar product is
computed.

Theorem 2.1 from [18] provides a method of computing the geodesic equa-
tion in O(np2). The Corollary 2.2 contains rather closed form and friendly
expressions for geodesic equation. We repeat this result below.

The geodesic equation for moving from X(0) = X in the direction of
Ẋ(0) = H on Stiefel manifold has the following form

X(t) = XM(t) +QN(t), (10)

where QR = K := (I − XXT )H is the compact QR-decomposition of K,
A = XTH and (

M(t)
N(t)

)
= exp

{
t

(
A −RT
R 0

)}(
Ip
0

)
(11)

The gradient of the function F (X) on the Stiefel manifold is defined to be
the tangent vector at X, hence using the inner product (9) we get

∇F (X) := FX −XFTXX. (12)

These formulas are used in [18] to construct Steepest Descent method and
Cojugate Gradient method for minimization problem (8). We slightly adopt
the methods to deal with our problem (4), which can be written as

min
b,CCT=I

F (b, C), (13)

with F (b, C) =
∑N
i=1 h(‖CXi − b‖2). For unconstrained minimization over b

we apply steepest descent step at each iteration, while for minimization over
C on Stiefel manifold we use conjugate gradient iterations. We denote Gk
the gradient of F (bk, Ck) with respect to C on the manifold as in (12), and
gradient with respect to b as gk. With this notation in mind the algorithm for
solving (13) reads as follows.
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Algorithm 1 Conjugate Gradient on the Stiefel manifold

1: Given: problem minb,CCT=I F (b, C) choose C0 and some b0 such that C0CT
0 = I.

2: Compute: G0 = ∇F (·, C0) and set H0 = −G0.
3: for k = 0, 1, . . . do
4: Minimize: F (bk, Ck(t)) over t where

Ck(t) = CkM(t) +QN(t),

where (I − (Ck)TCk)Hk = QR is a QR-decomposition. M(t) and N(t) are given in
(11).

5: Update: Ck+1 = Ck(tk) with tk = arg mint F (bk, Ck(t)).
6: Compute: wik according to (6).

7: Update: bk+1 = Ck+1Xw, where Xw :=
∑N

i=1 Xiwik∑N
i=1 wik

.

8: Compute: Gk+1 = ∇F (bk+1, Ck+1)
9: Parallel transport:

τHk = HkM(tk)− CkR
TN(tk), (14)

τGk = Gk (not parallel) (15)

10: Update: Hk+1 = −Gk+1 + γkτHk, where

γk =
〈Gk+1 − τGk, Gk+1〉S

〈Gk, Gk〉S

11: Reset: Hk+1 = −Gk+1 if k+ 1 ≡ 0 mod d(D− d) +m(m− 1)/2, where m = D− d.
12: end for

There are no closed form expression for parallel translation for matrix Gk
and hence we take it equal Gk. The choice τGk = 0 works as well and there is
no much difference in performance.

There are a lot more possible ways to choose γk, see page 17 of [18] and
note that taking the coefficient γk being equal to 0 and skipping the paral-
lel transport step transforms this method to the standard gradient descent
algorithm on Stiefel manifold, i.e. at each step we get

Hk+1 = −Gk+1.

Implementation details relate to 1D optimization problems (Steps 5), termi-
nation conditions (Step 11), calculation of QR-decomposition (Step 4); we do
not discuss them here.

4 Numerical experiments

This section sums up the performance of described algorithm from the com-
putational point of view comparing it with IRLS in terms of convergence,
accuracy and time complexity.

The first examples treat standard eigenvalue problem (find eigenvectors of
a symmetric matrix A corresponding to p smallest eigenvalues). The function
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to be minimized is quadratic and vector b lacking. These results are added to
check efficiency of the optimization method on Stiefel manifold compared with
standard linear algebra techniques [31], [23], [20], [4], [3].

Implementation details. The code for the algorithms of conjugate gra-
dient and IRLS were written in Python 2.7. Gradients were computed au-
tomatically using Theano1 framework [27]. Our experiments were performed
on a 64-bit, dual-core, Intel(R) 2.3GHz Xeon(R) CPU machine with 8 GB of
memory, running Linux version 4.9.

4.1 Eigenvalue Problem

The simplest eigenvalue problem for finding eigenvector of A ∈ Sn with the
least eigenvalue reads

min
‖x‖2=1

1

2
xTAx.

Considering the orthogonal matrix instead of unit-norm vector brings us to
the following problem

min
XTX=Ip

f(X) :=
1

2
trXTAX, (16)

where X ∈Mn,p, p > 1 and A is some symmetric matrix of size n. Its solution
is provided by matrix X∗ with p columns being eigenvectors with p smallest
eigenvalues.

In figure 1 we would like to show for problem (16) the dependence between
matrix size n and time and dimension p and time. We see that solution of
problems with n ≤ 1000 and p ≤ 50 requires less than one minute of calcu-
lations. It is comparable with results for standard linear algebra tools. Notice
that matrix A was not sparse, its entries were chosen to be i.i.d. standard
normal random variables.

The rate of convergence of the method for the same problem (16) is given
in figure 2.

The method demonstrated global convergence for all examples.

4.2 Weighted eigenvalue problem

A slight generalization of eigenvalue problem reads as

min
XTX=Ip

1

2
trXTAX ·N, (17)

where N ∈ Sp(R) is a symmetric matrix of size p.

1 https://github.com/Theano/Theano
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Fig. 1 This figure indicates the time needed for convergence of Algorithm 1 for two different
situations. In the left plot we take a matrix of size n = 1000 and vary the dimension p of
Stiefel manifold Stn,p. In the right plot the dependence for the fixed p = 3 on the matrix
size is given.
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Fig. 2 Consider the problem (16) with n = 20 and p = 3. The plot in the left shows the
objective function value in each iteration. In right plot we see two lines one of which is the
Frobenius norm of gradient Gk and the second is the distance from the optimal value. These
two lines illustrate the superlinear convergence of the method. The stopping criteria was the
following: stop if ‖Gk‖F < 10−6.

Here we have a simple explicit example borrowed from [5] such that reweight-
ening of summands of type xTi Axi can really prevent global convergence. The
example is for the manifold St4,2(n = 4, p = 2) and the matrices A and N are

A = diag(1, 2, 3, 4), N = diag(1, 2).

First, let us note that for a diagonal matrix N with entries n1, . . . , np (17) can
be rewritten as

min
(xi,xj)=δij

1

2

p∑
i=1

ni · xTi Axi,
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where δij is the Kronecker symbol. As for given example we end up with the
following expression

min
(x1,x2)=0,
‖x1‖=‖x2‖=1

1

2

[
xT1 Ax1 + 2xT2 Ax2

]
. (18)

The eigenvalues of matrix A are λ1,2,3,4 = 1, 2, 3, 4 and it is easy to see
that the global minimum is achieved for x1 = v2 (the eigenvector associated
with second smallest eigenvalue) and x2 = v1 (the eigenvector associated with
smallest eigenvalue) with function value of 2. So for this case the order of
eigenvectors in matrix X ∈Mn,p(R) is crucial.

Taking initial value X0 as follows

X0 =


√
3
3 −

√
2
2

0 0

−
√
3
3 −

√
2
2√

3
3 0


makes the method of conjugate gradient to converge to X̂ =

(
v1 v2

)
giving

the objective function value of 2.5 with

X̂ =


9.9 · 10−8 −1.

0. 0.
−1. −7.6 · 10−8

8.8 · 10−4 2.5 · 10−5

 , X̂TX =

(
1. −2.1 · 10−18

−2.1 · 10−18 1.

)
.

The function value along with its gradient norm are given in the figure 3

We note that in this subsection we skip the step 5 from algorithm 1 since
there is no b in the optimization problems formulated for finding the eigenvec-
tors of matrix A.

4.3 Robust PCA

Recall the problem of robust PCA from section 2 for given data points X =
{X1, . . . , XN} and d – the number of rows of matrix size C ∈Md,D:

min
b,CCT=I

N∑
i=1

h(‖CXi − b‖2). (19)

Further we will apply the described algorithm 1 for two fairly popular datasets.
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Fig. 3 The convergence of the method and optimality condition for problem (18) in two
cases: specifically chosen initial point (only local convergence was observed) and random
initial point (global convergence takes place).

4.3.1 Sleep in Mammals

We take the following data2 and illustrate performances of discussed methods.
From the whole pool of data that could be found in provided link we restrict
ourselves to only 4 features of mammals. Those are: ’BodyWt’ (body weight),
’BrainWt’ (brain weight), ’LifeSpan’ and ’Gestation’. Omitting the observa-
tions containing N/As we get the final data with N = 55 observations of D = 4
features. Prior to applying these methods we standardized the dataset, i.e.
scaled it to the common span 0÷ 100.

Our aim at this point is to construct the lower-dimensional subspace of
X ∈ RN×D. Here, we have chosen d = 2 =⇒ D − d = 2.

We applied conjugate gradient method on Stiefel manifold as well as itera-
tively re-weighted least squares. For conjugate gradient we set the initial point
to be equal to CPCA and bPCA just it was done in the method of IRLS. This
boosts the convergence a lot.

The obtained values of these two algorithms are given below

CCG =

(
−0.65146285 −0.74451327 0.09132868 0.113821
−0.75610812 0.65134562 −0.06097513 −0.018205

)
, bCG =

(
1.35270751
0.39414133

)

CIRLS =

(
−0.66576769 0.68983301 −0.25604461 0.12379399
0.06612924 0.37813871 0.4596208 −0.80086626

)
, bIRLS =

(
1.35270751
0.39414133

)
2 Sleep in Mammals: http://www.statsci.org/data/general/sleep.html

http://www.statsci.org/data/general/sleep.html
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Method Time [sec] # Iterations Value converged Relative error Gradient norm

IRLS 0.9 12 262.65993 1.2 · 10−11 –
CG on St 1.8 176 262.65993 4.8 · 10−09 4.5 · 10−5

Table 1 This table contains computational details of discussed methods for Sleep in Mam-
mals dataset.

with the objective function value being approximately f̂ = 262.659933 for both
IRLS and CG. The value of f̂ was rounded with 6 decimal digits precision,
and moreover the relative error

f̂IRLS − f̂CG

f̂IRLS

< 10−14.

Moreover, matrices CTCG and CTIRLS indeed belong to St4,2:

CCGC
T
CG =

(
1. −1.3 · 10−16

−1.3 · 10−16 1.

)
, CIRLSC

T
IRLS =

(
1. −1.1 · 10−16

−1.1 · 10−16 1.

)
In addition, we provide optimal values of C and b for the problem (1) which.

CPCA =

(
−0.31910718 −0.42073214 −0.43450504 0.72963035
−0.72146391 0.67672711 −0.14620879 −0.01237876

)
, bPCA =

(
4.25917183
−1.637549253

)
The discrepancy plot for above mentioned value of matrix C and b illus-

trates the robustness of the optimal values of problem (4) compared to the
standard PCA.

The

4.3.2 Wine Quality

The other choice of dataset is the data of wine quality3. The detailed descrip-
tion of the dataset could be found in [13]. We took D = 10 features of red wine
with N = 1599 and the same 10 features for white wine (with N = 4898). We
consider these datasets separately and show that illustrated algorithms work
in a reasonable amount of time. Further comparison of working time will be
discussed later.

The features used are ’fixed acidity’, ’volatile acidity’, ’citric acid’, ’residual
sugar’, ’chlorides’, ’free sulfur dioxide’, ’density’, ’pH’, ’sulphates’ and ’alcohol’.
Again, we have chosen d = 2 and hence D−d = 8. In the table 4.3.2 we provide
the working time and number of iterations for each algorithm. The optimal
values are intensionally removed from the paper. However, the optimal values
achieved by the algorithms and their relative errors are provided in the table
4.3.2.

3 http://www3.dsi.uminho.pt/pcortez/wine/
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Fig. 4 Discrepancy plot of Sleep in Mammals dataset. Closer look shows that the hyper-
plane obtained by CG and IRLS have fairly high discrepancy for two points (Indian and
African elephants) compared to others. Nevertheless the discrepancies of rest of points are
very low. This means that the it actually finds the lower dimensional structure of the data.
As for standard PCA we see that discrepancies have no such high values as in CG and IRLS
cases, however the values are higher than that of CG and IRLS. The latter means that PCA
is affected by the outliers.

White Wine Red Wine

Method Time [sec] # Iterations Time [sec] # Iterations
IRLS 6.25 12 2.12 11

CG on St 19.12 186 5.64 119

Table 2 This table shows the time and number of iterations for two types of wine: white
and red.

White Wine Red Wine

Method Value converged Relative error Value converged Relative error
IRLS 3704.9952 5.2 · 10−9 1338.0631 1.1 · 10−9

CG on St 3704.9981 2.5 · 10−7 1338.5662 7.5 · 10−7

Table 3 This table shows the converged values as well as the relative error for two types
of wine: white and red.
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4.3.3 Discussion

For the eigenvalue problem we know that the extrema points of problem (16)
are the collection of p eigenvectors and any collection besides the collection of
p eigenvectors associated with smallest eigenvalues are stationary points. The
theoretical validation of global convergence to the minimum point remains
open, however, our numerical experience with random initial points confirmed
global convergence. This method handles problems with large dimensions of
matrix A in a reasonable amount of time. The situation for for weighted eigen-
value problem (subsection 4.2) can be different; no global convergence can be
guaranteed.

It is well known that conjugate gradient method for unconstrained mini-
mization of f(x) is finite (for f(x) quadratic) or converges superlinearly (for
f(x) smooth and strongly convex [28]). We are not aware on any results on
convergence and its rate for optimization on Stiefel manifolds. The practical
implementation exhibits fast convergence for most examples. The algorithm
IRLS shows a bit faster convergence however its iterations are costlier. For
the large dataset sizes N and D used QR decomposition is easier to compute
rather than SVD used in IRLS algorithm.

From the optimization point of view indeed many iterations of convergence
are required to achieve high accuracy. However, in most machine learning tasks
full optimization might give very little or no gain ultimately. Taking the initial
point to be CPCA and bPCA and making only small number of iterations will
be enough to handle the outliers and obtain more ”robust” lower-dimensional
hyperplane.

5 Concluding remarks

We have proposed an optimization method that deals with problem of the
following type: minb,CCT=I F (b, C) for smooth and convex function F (·). The
important special cases of such problems are the robust principal component
analysis and (weighted) eigenvalue problem. The standard PCA is used in
many fields of research but unfortunately is not robust to outliers. The pre-
sented robust version of PCA (4) can be solved using either IRLS method
from [30] or described in this paper algorithm 1. Solving (4) indeed requires
more computational resources than PCA. IRLS iterations are based on sin-
gular value decomposition [17] while CG on Stiefel manifold computes the
QR decomposition in each iteration. However, there might be problems with
time and memory while computing the SVD decomposition of given matrix
X ∈ RN×D for large enough N and D. While SVD (even with no full matrices)
can be very time and space consuming the QR decomposition is less costly.
Therefore, when the sizes N and D are large enough then it would be much
better to use CG algorithm 1 rather than IRLS. There are cases when IRLS
fails but CG converges in a reasonable amount of time.
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