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Abstract  
 

Research and development of automated poker playing software (Counterfactual 
Regret Minimization)  
Author: Tamara Shmavonyan 
 

Poker is an imperfect information game, i.e. the player possesses some information about 
the state of the game, but not all of it (each player can see his/her own cards and the public cards, 
but not the cards of the opponent). Inversely, chess is a perfect information game, as the 
knowledge about other players is available to all players (everyone sees all of the pieces on the 
board). This makes poker a substantially different game, making impossible to automatically 
play poker using conventional Machine Learning algorithms. University of Alberta is leading the 
research in the field of creating computer programs that play poker better than any human being. 
[1]  

By being occasional poker players interested in game theory, we decided to analyze 
already existing algorithms, define problems and try to build an AI-based strategy that will play 
the most popular variation of the poker game, 2 player limit Texas Hold’em Poker, without 
human interaction. 

One way of building a poker playing strategy is to build a program which is playing at 
Nash Equilibrium. One way of reaching the Equilibrium is using the algorithm called 
“Counterfactual Regret Minimization” (CFR). CFR is a self-play algorithm: it learns to play a 
game by repeatedly playing against itself. There are many modifications of this algorithm such 
as vanilla CFR, Chance Sampling (CS) CFR, Outcome Sampling (CS) CFR, Public Chance 
Sampling (PCS) CFR. Our goal was to implement the Pure CFR. 
 We implement the CFR algorithm to solve abstractions of limit Texas Hold’em with 

states. Game states are the number of possible sequences of actions by the players. In the 1012  
poker setting, this would include all of the ways that the players’ private and public cards can be 
dealt and all of the possible betting sequences [9]. This number allows us to compare a game 
against other games such as chess or backgammon, which have  and  distinct game1047 1020  
states respectively. 

We train the CFR algorithm by playing million rounds with itself and get the approximate 
Nash Equilibrium of the game (the probabilities of each action in the tree which leads to profit). 
The software is implemented using C++ programming language.  

 
Most universities who do research in this area have their own implementations of 

different bots, but the source code is not available. This creates a barrier for new students trying 
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to join the research. For that reason we decided to implement the "basic" poker playing algorithm 
as well as some AI algorithms, which can serve as a basis for any future research. After a few 
more optimizations, when we believe our software is mature enough, we will make it 
open-source, allowing other people to do their research starting not from scratch anymore. 
 
Keywords: Nash Equilibrium, CFR in poker, cards isomorphism, bucketing, regret 
minimization, imperfect information games, game tree, backward induction. 
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in exchange for a fee. You may not charge a fee for the OC itself. You may not charge a fee for 
the sole service of providing access to and/or use of the OC via a network (e.g. the Internet), 
whether it be via the world wide web, FTP, or any other method.  
 
2. You may modify your copy or copies of the OpenContent or any portion of it, thus forming 
works based on the Content, and distribute such modifications or work under the terms of 
Section 1 above, provided that you also meet all of these conditions:  
 
a) You must cause the modified content to carry prominent notices stating that you changed it, 
the exact nature and content of the changes, and the date of any change.  
 
b) You must cause any work that you distribute or publish, that in whole or in part contains or is 
derived from the OC or any part thereof, to be licensed as a whole at no charge to all third parties 
under the terms of this License, unless otherwise permitted under applicable Fair Use law.  
 
These requirements apply to the modified work as a whole. If identifiable sections of that work 
are not derived from the OC, and can be reasonably considered independent and separate works 
in themselves, then this License, and its terms, do not apply to those sections when you distribute 
them as separate works. But when you distribute the same sections as part of a whole which is a 
work based on the OC, the distribution of the whole must be on the terms of this License, whose 
permissions for other licensees extend to the entire whole, and thus to each and every part 
regardless of who wrote it. Exceptions are made to this requirement to release modified works 
free of charge under this license only in compliance with Fair Use law where applicable.  
 
3. You are not required to accept this License, since you have not signed it. However, nothing 
else grants you permission to copy, distribute or modify the OC. These actions are prohibited by 
law if you do not accept this License. Therefore, by distributing or translating the OC, or by 
deriving works herefrom, you indicate your acceptance of this License to do so, and all its terms 
and conditions for copying, distributing or translating the OC.  
 
NO WARRANTY  
 
4. BECAUSE THE OPENCONTENT (OC) IS LICENSED FREE OF CHARGE, THERE IS NO 
WARRANTY FOR THE OC, TO THE EXTENT PERMITTED BY APPLICABLE LAW. 
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS 
AND/OR OTHER PARTIES PROVIDE THE OC "AS IS" WITHOUT WARRANTY OF ANY 
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE 
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 
PURPOSE. THE ENTIRE RISK OF USE OF THE OC IS WITH YOU. SHOULD THE OC 
PROVE FAULTY, INACCURATE, OR OTHERWISE UNACCEPTABLE YOU ASSUME 
THE COST OF ALL NECESSARY REPAIR OR CORRECTION.  
 
5. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN 
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY 
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MIRROR AND/OR REDISTRIBUTE THE OC AS PERMITTED ABOVE, BE LIABLE TO 
YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR 
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE 
OC, EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE 
POSSIBILITY OF SUCH DAMAGES.  
 
(This license is known as “OpenContent License (OPL)” and can be found at 
http://opencontent.org/opl.shtml) 
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1 Introduction 
 
This paper has the following structure: next chapter (Theoretical Background) aims to acquaint 
the reader with the rules of Texas Hold’em and some terms from the game itself and game 
theory, which are necessary for further understanding the thesis. It also defines extensive-form 
games and Nash Equilibrium for incomplete information extensive-form games. The glossary in 
the last part of the chapter lets the reader quickly lookup the term associated with the game if 
needed. Chapter 3 covers the Counterfactual regret minimization algorithm which helps to find 
the Nash Equilibrium of the Poker game. The algorithm and the implementation are described in 
that chapter. The results and further plans regarding the project are described in chapter 4. 
 
 

2 Theoretical Background 

2.1 The game of Poker 
 
Poker is the most popular card game which includes strategy, gambling and skill. Some of its 
properties like incomplete information and clearly defined rules make poker an interesting and 
challenging target for AI experiments. Poker has never been as widespread nor as quickly 
growing as it is right now. The rules are simple. The game is played with a standard deck of 52 
playing cards. Four suits: hearts, spades, clubs, diamonds. Thirteen cards of each suit. The 
number of players can vary from two up to ten, playing clockwise around a table. Each player is 
dealt two cards, called hole cards. Five more public cards are subsequently revealed in four 
round gameplays. The rounds are called: preflop, flop, turn, river. On each round a player can 
choose among 5 actions: fold, check, call, bet, raise. You can look up the explanation of the 
actions in the glossary.  Finally, after making a decision in each round the winner is determined 
by the best combination picked from his hole cards and 5 public cards. There are many game 
variations and we will discuss 2-player Limit Texas Hold’em Poker game variation in this paper.  
 
  

7 



 

2.1.1 Texas Hold’em Poker 
 
In this game variation, designations of minimum and maximum bets are made. Texas Hold'Em 
game starts off the pot with two blind bets (bets made by players before they even see their 
cards). The small blind should be slightly less or equal to the minimum bet. The big blind should 
be twice as much as the small blind. Three cards are flipped after the first betting round (Flop), a 
fourth after the second betting round (Turn) and a fifth after the third betting round (River). After 
River round is finished, comes the showdown, where any remaining players will display their 
two cards and the player who has the best hand wins. If two or more players have the same hand 
then the pot is split equally between them.  
There are three variations of Texas Hold ’em Poker: fixed-limit, pot-limit and no-limit. In Limit 
Texas Hold'em a maximum of four bets are allowed per player in a betting round - (1) bet, (2) 
raise, (3) re-raise and (4) cap. In No-Limit and Pot-Limit Texas Hold'em the number of times a 
player can raise is not limited. A player cannot raise themselves, i.e. if he was the last one to 
choose Raise action during a round, he would not get an option to re-raise. A player is declared 
All-In if they do not have enough chips to call [8].  

 
 

2.1.2 Hand Strength 
 
 
Here are the combinations sorted from strongest to weakest. The name and and example of the 
combination are provided. We will use A for Ace, K for King, Q for Queen, and J for Jack. 

1. Straight Flush (5♥ 6♥ 7♥ 8♥ 9♥) - Five cards in a rank sequence of the same suit.  
2. Four of a Kind (4♥ 4♠ 4♥ 4♣) - Four cards of the same rank and different suits.  
3. Full House (Q♦ Q♠ 2♣ 2♠ 2♥) - Three cards of the same rank with a pair of another rank. 
4. Flush (J♠ 2♠ 9♠ K♠ 7♠) - Five cards of the same suit. 
5. Straight (7♠ 8♦ 9♦ 10♠ J♥) - Five cards in a rank sequence. 
6. Three of a kind (3♠ 3♦ 3♥) - Three cards of the same rank. 
7. Two Pair (A♥ A♦ 5♣ 5♠) - Two pair of cards. 
8. Pair (8♠ 8♥) - A pair of cards of the same rank. 
9. High card (K♠) - The highest ranked card in the current game[8].  
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2.1.3 Glossary 
 

 
● All-in: Betting all of the chips a player has. 

 
● Big blind: An obligatory bet on the initial round placed by the player sitting two places 

to the left of the dealer button, twice as big as the small blind. 
  

● Button: The player in the position of the card dealer. 
 

● Flop: Second round, the action of dealing the first three public cards. Sometimes refers to 
the cards themselves. 

  
● Hand: The two cards that a player is holds. Sometimes refers to the best five cards of a 

player. 
  

● Kicker: Also called a side card, is the card that may be used to break ties between the 
hands of the same rank. 

  
● Pot: The overall amount of chips bet by all players in the current hand. 

  
● Pot odds: The ratio of the actual pot and the amount of chips necessary to call a bet.  

 
● Pre-flop: The first round in the game, before flop is dealt. 

  
● River: The action of revealing the last fifth public card to the board, also refers to the 

card itself. 
 

● Small blind: An obligatory bet on the initial round placed by the player to the left of the 
dealer button. 

 
● Turn: The action of revealing the fourth public card to the board, also refers to the card 

itself.  
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 2.2 Game Theory 
 
Game theory studies strategic situations. Originally, it addressed zero-sum games, when for the 
first time Von Neumann and Morgenstern thoroughly characterized the optimal solutions to them 
in their book called Theory of Games & Economic Behavior. Zero-sum games are two-player 
games in which one player wins if and only if the other loses [Prajit K. Dutta]. Poker is a 
zero-sum game. Poker exemplifies a zero-sum game, because one wins exactly the amount one's 
opponent loses. In 1950, John Nash introduced the equilibrium concept which is the one of the 
most widely used concepts in modern game theory. We will define the Nash Equilibrium in the 
next subchapter [4].  

 
  

2.2.1 Extensive Form Games  
 

In game theory, a sequential game is defined as sequential moves of the players until reaching a 
terminal state. The next player has some information of the first's choice.  
 
The extensive form is a way of describing a sequential game using a game tree. It’s simply a 
diagram that shows that choices are made at different points in time. N-person game in extensive 
form consists of a set N of n players, a rooted tree T called game tree, a partition of set of 
non-terminal nodes of T into n+1 subsets denoted , , , …, , the members of  P 0 P 1 P 2 P n P i  
are called the nodes of player i. Each terminal node of the game tree has an n-tuple of payoffs, 
meaning there is one payoff for each player at the end of every possible play. 
Poker is an Extensive-Form Game. We’ll talk about the two-player poker game in this paper [5].  
 

Games such as chess, backgammon, tic-tac-toe and Poker are examples of sequential extensive 
games. The size of the decision trees can vary according to game complexity, ranging from the 
small game tree of tic-tac-toe, to an immensely complex game tree of chess or poker so large that 
even computers cannot map it completely. 

 

 

2.2.2 Nash Equilibrium 
 
The Nash Equilibrium is a concept of game theory where the optimal outcome of a game is one 
where no player has an incentive to deviate from his chosen strategy after considering an 
opponent's choice. Overall, an individual can receive no incremental benefit from changing 
actions, assuming other players remain constant in their strategies. A game may have multiple 
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Nash Equilibria or none at all. If a game is zero-sum game, it must have an equilibrium. 
Computing this equilibrium for imperfect information games, where players have private, hidden 
information, is harder than solving perfect information games [4, 6].  

In sequential games with perfect information, a subgame perfect equilibrium can be found by 
backward induction (will be described in algorithm implementation). 

Poker is an imperfect information game as we don’t know the cards of the opponent until the end 
of the game. That’s why it's impossible to compute the exact Nash equilibrium during the game 
play. 

3 Counterfactual Regret Minimization 
 

3.1 Best strategy 
Generally, the most profitable strategy to play is the strategy - Nash Equilibrium. That makes the 
opponent indifferent to our actions. If the opponent also plays with the Nash strategy, we become 
indifferent to his actions [4]. That allows both of us to maximize our benefits during the game 
play. 
 
Let’s denote by   (i player’s set of strategies) the i-th player’s strategy. A strategyσi ∈ Σi  
profile (strategies of all the players) is denoted by σ.   refers to all the strategies in σ exceptσ−i  

 (i-th player’s strategy).  Our task is to find σ which is approximately the best strategy for allσi  
the players for the given card combination. By finding those σ strategy profile we find the Nash 
Equilibrium of the game. 
 
 

3.2 Nash Equilibrium in imperfect information games 
 
The term regret is used to describe how much more payoff would the player have over all the games 
so far if he deviated from his strategy. 
If the regret is positive, the player would have done better if he had taken that action more often. 
If it is negative, he would have done better by not taking that action at all.  
Finding Nash Equilibrium of an imperfect information game is the same as minimizing the regret 
of the player for each action. 
The correctness of the regret minimization formula that I use in my software, is proven in Regret 
Minimization in Behaviorally-Constrained Zero-Sum Games (9 Nov 2017) [2] (also in [3]). Let's 
include some notations from that paper.  
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● N - finite set of players. In our case N = 2. 
 

● H - all the possible histories. Z ⊆ H is the terminal histories (when the game is over, i.e. 
when someone folds, or in the end of the round RIVER). 
 

● A(h) = {a : (h, a) ∈ H} - actions available after non-terminal history h ∈ H.  
 

● P is the player function (selects the next player). P(h) is the player who takes an action 
after the history h. 

 
● For each player i ∈ N a partition  of {  h ∈ H : P(h) = i  } with the property thatΨi   

A(h) =  A( ) whenever h and  are in the same member of the partition. For  ∈ h0 h0 I i Ψi  
we denote by A( ) the set A(h) (all possible actions after history h) and by P( ) theI i I i  
player P(h) for any h ∈  .  is the information partition of player i; a set Ii ∈  isI i I i Ψi  
an information set of player i.  

 
●  is the utility function which shows the payoff of each action. It maps terminal statesU i  

Z to the reals R . The non-terminal state payoffs are being computed recursively. 
 

●  be the probability of history h occurring if players choose actions according to σ (h)π σ  
 
 
Approximate (imperfect game) “Nash equilibrium” theoretical definition for each player is: 
 

(σ) ≥ max ( , ) for all  u1 u1  σ′1  σ2  σ′1  ∈  Σi  
 

(σ) ≥ max ( , ) for all  u2 u2  σ1  σ′2  σ′2  ∈  Σi  
 
Our aim is to find the approximate Nash Equilibrium. An approximation of a Nash equilibrium 
or -Nash equilibrium is a strategy profile σ where:ε  
 

(σ) +  ≥ max ( , ) for all  u1  ε u1  σ′1  σ2  σ′1  ∈  Σi  
 

(σ) +  ≥ max ( , ) for all  u2  ε u2  σ1  σ′2  σ′2  ∈  Σi  
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In order to compute the Nash Equilibrium of the imperfect information game we should compute 
the regret of each action and minimize the regret by changing the player’s strategy profile. 
 

3.3 Computing Counterfactual Regret 
 
Let   be the strategy used by the player i on the round t.σt

i   
The average overall regret of player i at time T is:  
 

=  max  ( ( , ) − ( ))   for all  Ri
T 1

T ∑
T

t=1
 ui  σi

*  σt
−i  ui  σt  σi

*  ∈  Σi  

 
 
The most effective and understandable way of doing that is to divide this problem into 
subproblems and solve each using backtracking. Solving larger abstractions yields better 
approximate Nash equilibria in the original game. 
The task is to programatically decompose overall regret into a set of additive regret terms, which 
can be minimized independently. This regret minimization concept is called counterfactual 
regret. Counterfactual regret exploits the degree of incomplete information in an extensive game. 
The overall regret is bounded by the sum of counterfactual regret, and the counterfactual regret 
can be minimized at each information set independently [1].  
 
 

=   (1)(σ , I)  ui
 
  

π (I)
σ 

 
−i

π  (h) π  (h, h ) u (h )∑
 

h ∈I , h  ∈Z′
 

σ 
 

−i  
σ 

 ′ i ′

 

 
 
The most effective Regret minimization formula by the time we started our observations: 
 

=    ,(I , a)  Ri
T  1

T ∑
T

t=1
 (I) (u (σ |I→a, I) u (σ , I))π−i

σt 
 

i
t  −  i

t   

 
= max( , 0) for time T + 1,(I , a)Ri

T ,+  (I , a)  Ri
T   
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, if  > 0(I)(a)  σi
T  + 1 =

R (I , a)i
T ,+

(I , a)∑
 

a ∈A(I)
Ri

T ,+
(I , a)∑

 

a ∈A(I)
Ri

T ,+   

 
 

= , otherwise(I)(a)  σi
T  + 1 1

|A(I)|  
 

 

3.4 Regret Minimization algorithm description 
 
In this chapter the description of the applied algorithm will be illustrated on the poker tree.  
 
 

3.4.1 Open Pure CFR algorithm 
 
Pure CFR is a time and memory-efficient variant of the Counterfactual Regret Minimization 
(CFR) algorithm for computing strategies for an extensive-form game with imperfect 
information.  

The implementation of the algorithm requires a specific tree to be constructed.  

The Poker tree initialization 

1. First we construct the poker tree with 4 iterations correspondingly for each round: 
preflop, flop, turn, river. Each iteration inserts 2 basic levels into the tree: one for the 1st 
player and the other for the 2nd one.  
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1st iteration for the round Preflop 
 

2. Initializing tree with actions. Each action forms a separate subtree.  
3. Each action has a fixed amount of money to bet. We recursively traverse the tree by increasing 
the amount of pot in each state (node). So in the terminal states (leaves) it will be obvious what 
amount of money each of the players win/lose. 
4. Each action of the tree has an associated  value. It shows the probability of choosing σ  
exactly that action by having the previous history. Initially those values are determined according 
to this formula: 
 

= if size of subtrees > 0, otherwise  = 0.5. σ 1
size of  subtrees  σ  
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2 levels of the Poker tree 
 
 
Next we start the main part of the algorithm.  
 
We generate 9 random cards, pass them to the bucketing algorithm, and get bucketing numbers 
for both 2 players and all the rounds. We get 4 pairs. 1st pair contains the bucketing numbers 
(numbers showing in which bucket does the card combinations belong, there may be more than 
one card combinations having the same bucket number if the cards are equivalent) of 1st and 2nd 
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player in the round preflop. 2nd pair contains the bucketing numbers of 1st and 2nd player in the 
round flop, etc. 
 
In order to train the AI and find the approximate Nash values, CFR algorithm simulates a 
two-player game by playing against itself. After each game, it computes and updates new regret 
values for all of its actions it just made. Then the algorithm recomputes playing strategy so that it 
takes actions with probabilities proportional to their positive regret. If an action has been good in 
the past, then the CFR algorithm will choose it more often in the future. 
 
Let’s describe more details of the algorithm. For each bucketing number there’s an associated 
probability value which is kept in each node of the tree in form of a matrix. There is an 
associated pot for every state in the tree. And there is a payoff value for each state. For the base 
case the payoff is ui = pot/2. 
For the other states it is being calculated recursively according to the formula 1 defined above. 
The second payoff is being calculated by using the probability values which are kept in each 
node of the tree.  
Next step is to calculate the regret at time T. If it is positive, we should update the probability 
value corresponding to the bucket number of the node. This update affects the whole tree, as all 
the nodes are being recursively updated in the next steps.  
 

3.4.2 The implementation 
 
The software is implemented using C++ programming language. Poker tree, nodes and other 
structures are implemented using C++ stl data structures (set, map, vector). The Regret 
Minimization algorithm is implemented using backward induction which is the main technique 
of solving (finding the Nash Equilibrium of the game) sequential games. Backward induction 
programmatically is done by recursion. First we initialize the terminal nodes of the tree (leaves), 
then we go up level by level and update the regret associated values. 

4 Results 
As a result, we have a software which computes the approximate Nash Equilibrium for 2 player 
limit Texas Hold’em Poker by using counterfactual regret minimization. With the use of 
bucketing and card isomorphism algorithms, this modification of CFR runs a lot faster compared 
to other modifications. A very efficient algorithm, Monte Carlo CFR, is faster for no limit poker 
for many players [10], but this variant performs at its best in 2 player limit poker. After a few 
optimizations and refactoring, we will put the code open source and invite everyone to 
contribute. 
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