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We present two methods to obtain the mean delay cycle for the M/G/1 queueing system 
with the Vacationing Server Model – VSM, which starts with an arrival during a vacation 
and ends when the queue is emptied and a vacation starts. In the case of VSM with 
multiple vacations the server returning from a vacation takes another vacation if the queue 
is empty, otherwise it starts serving requests. The M/G/1 queue has arrivals with rate λ, 
mean service time x, so that its utilization factor is ρ = λx, and its mean busy period 
is g = x/(1 − ρ). The VSM delay cycle starts with a requested whose mean service time 
is augmented by the mean residual vacation time: y = x + vr , so that the mean delay 
cycle is dv = y/(1 − ρ). This is the method used to determine rebuild time in RAID5 disk 
arrays. In a second study which deals with threshold scheduling of readers and writers dv

is obtained as the product of the mean number of requests arriving during the residual 
vacation time plus one (the request starting the residual vacation time) times g, which 
yields dv − vr = (1 + λvr) × g as before. The analysis of VSM for rebuild processing in 
RAID5 and threshold scheduling of readers and writers is provided.

© 2018 Elsevier B.V. All rights reserved.
1. Introduction

We consider the Vacationing Server Model – VSM in an 
M/G/1 queueing system with Poisson arrivals and general 
service times [9], where an idle server takes multiple vaca-
tions when the request queue is emptied [9,19]. The server 
returning from a vacation takes another vacation if the 
queue is empty, but otherwise it starts serving requests 
again. Of interest is the mean delay cycle, denoted by dv , 
which is the time since the first arrival during the vacation 
period up to the time the queue is emptied [10].
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VSM was applied in the context of RAID5 disk arrays 
with dedicated and distributed sparing in [22] and [24], re-
spectively. We are interested in the effect of rebuild reads 
on the mean waiting time and the effect of the external 
requests on rebuild time.

VSM was applied to threshold scheduling of readers 
and writers in [20,21]. Readers are processed concurrently 
at a maximum degree of concurrency M , while writers 
cannot be processed concurrently with readers and each 
other. Writers arrive according to a Poisson process and 
when the processing of writers is completed the system 
starts processing readers during its vacation. There are M
readers in a closed system and a completed reader is im-
mediately replaced by a new reader. The processing of 
readers is stopped when the number of enqueued writ-
ers reaches the threshold K and resumes when the delay 
cycle for processing writers ends.
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Provided writer service times are exponentially dis-
tributed the aforementioned system can be modeled as 
a two-dimensional Continuous Time Markov Chain – CTMC, 
where one dimension has M states to specify the num-
ber of active readers and the other an infinite number of 
states for the number of writers. The expression obtained 
for the mean number of writers (N w ), obtained by solving 
the CTMC, which is given by Eq. (A.8) in [21] is different 
from the one obtained using VSM (see Eq. (3.8)), but both 
methods yield the same numerical value. VSM is applica-
ble to the case where writers have a general service time, 
i.e., an M/G/1 queueing system as discussed in Section 4.

Different methods are used in [22] and [21] to deter-
mine the mean duration of the delay cycle (dv ) and it is 
shown in Section 2 that both methods yield the same re-
sult.

Perhaps the earliest study of VSM is [1] where five 
models: A–E are proposed. We are considering Model E 
with vacations starting when there are no more requests 
to serve. An early application of VSM in the context of 
a paging drum with FIFO scheduling, which relies on the 
analysis in [18] is [7]. VSM is dealt with as a single home-
work problem in [9], but there are numerous variations 
which are reviewed in [19]. A recent text devoted solely 
to the theory and applications of VSMs is [31]. VSM is dis-
cussed in operations research texts on stochastic systems 
and queueing theory, such as Section 9.4 in [13].

Reader–writer queues with Poisson arrivals, with gen-
eral i.i.d. service times, and alternating exhaustive priori-
ties are considered in [15]. Readers can be processed si-
multaneously, while writers are processed one at a time. 
The system switches from readers to writers when there 
are more readers to be processed and vice-versa. This sys-
tem is analyzed to produce the stability condition and 
the LST for the steady state queueing time of readers 
and writers. A queueing system with reader preference 
is analyzed in [14] using M/G/∞ busy period to model 
readers and a modified M/G/1 queue to model the en-
tire system. A reader–writer queue under the following 
five priority disciplines, where a strong priority implies 
preemption, is considered in [16]: strong reader prefer-
ence (SRP), reader preference (RP), alternating exhaustive 
priority (AEP), writer preference (WP), and strong writer 
preference (SWP). Stability condition and the means for 
the steady-state reader and writer queueing times are ob-
tained. The operation of VSM with both writer and reader 
arrivals is shown in Fig. 1 in [25], which uses simulation 
to study the effect of separate thresholds for readers and 
writers to balance writer and reader mean response times. 
An approximate solution to the nonsaturated readers and 
writers problem appears in [33]. Section 5.1 on updating 
mirrored disks and Section 5.2 on synchronizing reads on 
updating replicated databases in [29] are relevant to this 
paper.

This paper is organized as follows. Section 2 is the core 
section of the paper, which provides an analysis of VSM in 
the context of the M/G/1 queueing system. Section 3 de-
scribes RAID5 disk arrays and provides the analysis used 
in [22] to obtain the rebuild time in RAID5 disk arrays and 
the effect of rebuild on the response time of disk requests. 
Section 4 describes the application of VSM to threshold 
scheduling of readers and writers. We conclude with Sec-
tion 5.

2. Analysis of M/G/1 queues with VSM

We consider an M/G/1 queueing system with Poisson 
arrivals with for requests rate λ and exponentially dis-
tributed interarrival time with mean t = 1/λ. Requests 
served in FCFS order have a general service time with 
probability density function – pdf b(x), Laplace–Stieltjes Trans-
form (LST) B∗(s) = ∫ ∞

x=0− b(x)e−sxdx. The ith moment xi , the 
mean x, and the mean residual service time xr = x2/(2x). 
The utilization factor of the server is: ρ = λx with the con-
dition ρ < 1 to ensure a finite queue length [9].

An M/G/1 queueing system alternates between busy 
and idle periods. Noting that the fraction of time the server 
is busy is: ρ = g/(g + t), we have g = x/(1 − ρ). The sum 
of these two periods is referred to as a cycle and has a 
mean: ( c ) = g + t .

After completing each vacation the server checks if the 
queue is empty and if so takes another vacation and other-
wise starts serving requests. The pdf of vacation time is 
v(x), its LST V ∗(s) = ∫ ∞

0− v(x)e−sxdx, its ith moment vi , 
and the mean residual vacation time vr = v2/(2v). In Sec-
tion 3 we consider a VSM with multiple vacations and in 
Section 4 a VSM with a single vacation.

The Pollaczek–Khinchin formula for mean waiting time 
in M/G/1 queueing systems with FCFS scheduling is given 
as [9]:

W M/G/1 = λx2

2(1 − ρ)
.

This formula is extended below to VSM by noting that 
Poisson Arrivals See Time Averages – PASTA [32]. The mean 
waiting time encountered by an arriving request with VSM 
in effect (W V S M ) is the mean delay due to service time of 
requests ahead of it in the queue: the mean queue length 
(Nq) times the mean service time (x), plus the mean resid-
ual service time (xr ) if the server is busy (P[busy] = ρ) and 
the mean residual vacation time (vr ) if the server is idle 
(P[idle] = 1 − ρ).

W V S M = Nqx + ρxr + (1 − ρ)vr .

It follows from Little’s result [9] that Nqueue = λW V SM , 
hence:

W V S M = λx2

2(1 − ρ)
+ v2

2v
= W M/G/1 + v2

2v
. (1)

W V SM is increased by the mean residual time of re-
build reads, which corresponds to Eq. (2.14a) in Chapter 2 
in [19]. As an aside, the VSM analysis in [22] was adopted 
to the analysis of rebuild in RAID1 (mirrored disks) in [2], 
which uses Eq. (2.40a) in Chapter 2 in [19], which is for 
the case when the first request has an exceptional service 
time, but this is not the case here.

The mean busy period (g) can be determined from its 
LST derived based on Takacs’ analysis in [9]. Given
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G∗(s) = B∗(s + λ − λG∗(s)), (2)

the mean busy period is g = −dG∗(s)/ds|s=0 = x/(1 − ρ).
In the case of VSM it is as if the first request has an 

exceptional service time, known as the initial delay Y0, we 
have a delay cycle Yc , which starts with the arrival of the 
first request at an empty M/G/1 queue and ends when the 
system is empty again. As shown in Fig. 3.1 in [10]) Yc =
Y0 + Yb , where Yb is the delay busy period during which 
requests are served. Denoting the LSTs of Yc , Y0, and Yb

with G∗
c (s), G∗

0(s), and G∗
b(s), it is shown in Section 3.3 in 

[10] that we have the following relationship among LSTs:

G∗
c (s) = G∗

0(s + λ − λG∗(s)) (3)

where G∗(s) was given by Eq. (2).
In the case of VSM the mean service time of the 

first request is augmented with the mean residual delay: 
E[Y0] = x + vr . The mean value delay cycle is E[Yc] =
−dG∗

c (s)/ds|s=0 = E[Y0]/(1 −ρ) and the delay busy period 
are E[Yb] = ρE[Y0]/(1 −ρ) [11]. We use an argument sim-
ilar to the one used in obtaining g to obtain the mean of 
the delay busy period: E[Yb] = dv − vr :

ρ = dv − vr

dv + 1/λ
=⇒ dv = x + vr

1 − ρ
. (4)

The analysis of a threshold scheduling policy in the 
context of the classical readers and writers problem uses a 
different method to obtain dv by multiplying the mean du-
ration of an ordinary M/G/1 busy period, i.e., g = x/(1 − ρ)

by the number of requests K + J yields the delay cycle mi-
nus vr .

It can be shown using a method similar to the one 
described in [9] that the z-transform for the number of 
arrivals during a service time as given by Eq. (5.45) in 
[9], the number of arrivals during a vacation is α(z) =
V ∗(λ −λz). The z-transform for the number of arrivals dur-
ing the residual vacation time is [6]:

β(z) = 1 − α(z)

α(1)(1)(1 − z)
. (5)

The mean number of arrivals during residual vacation time 
is then:

J = α(2)(1)

2α(1)(1)
. (6)

If the vacations time is exponentially distributed with 
parameter μ, V ∗(s) = μ/(s + μ) and α(z) = μ/d(z) with 
d(z) = λ − λz + μ. Given α(z) the first two moments of 
the number of arrivals can be obtained as follows:

α(z) = μ

d(z)
,

dα(z)

dz
|z=1 = λν

d2(z)
|z=1 = λ

μ
,

d2α(z)

dz2
|z=1 = 2λ2μ

d3(z)
|z=1 = 2λ2

μ2
,

where we have used Eq. (6) to obtain J = λ/μ, since 
vr = v = 1/μ due to the memoryless property of the expo-
nential distribution [9]. One is added to J to take into ac-
count the first request starting the residual vacation time.
An alternative derivation of Eq. (4) is then:

dv = (1 + λ/μ) × x/(1 − ρ) + vr .

For a general vacation time distribution:

J = α(2)(1)

2α(1)(1)
= λvr . (7)

Multiplying by J +1 to take into account the arrival, which 
started the residual vacation time we obtain dv previously 
given by Eq. (4).

dv = (λvr + 1) × x

1 − ρ
+ vr = x + vr

1 − ρ
. (8)

3. RAID5 disk array organization operation

Redundant Arrays of Independent Disks – RAID level 5 
(RAID5) attains load balancing via striping, which parti-
tions large files into strips placed in round-robin manner 
across the N disks in the array [3]. Erasure coding in RAID5 
dedicates the capacity of one out of N disks to parity. One 
strip per stripe holds the eXclusive-OR (XOR) of the N − 1
data strips in the stripe. Parity strips are placed in repeat-
ing left to right diagonals according to the left symmet-
ric organization to balance disk loads for updating parity 
blocks [3].

The updating of small data blocks on disk by Online 
Transaction Processing – OLTP applications has a significant 
impact on performance due to the Small Write Penalty 
(SWP), since it entails two disk accesses to read the old 
data and old parity blocks, unless they are cached, com-
putes the parity, and uses two more disk accesses to write 
them.

After a single disk failure RAID5 disk arrays continue 
their operation in degraded mode. Each access to the failed 
disk requires the reading of corresponding blocks from all 
surviving disks, which are then XORed to reconstruct the 
missing block on demand. The doubling of the read load 
on surviving disks is reduced by using the Clustered RAID – 
CRAID) paradigm and setting the parity group size G to less 
than N , so that the load increase is α = (G −1)/(N −1) < 1
[17].

Two methods to implement CRAID he Balanced Incom-
plete Block Designs (BIBD) and Nearly random Permutations – 
NRP are described in [28]. The load increase for a mixture 
of read and write requests in clustered RAID5 and RAID6 
is quantified in [26]. The mean response time degradation 
in tolerating one and two disk failures in RAID5 and RAID6 
disk arrays are quantified in [27].

Requests for on demand reconstruction of blocks on 
failed disks or unreadable sectors are modeled as Fork–Join 
– F/J requests. Techniques to determine the mean response 
time of F/J requests based on [22,24] and other studies are 
reviewed in [29]. The overall mean response time of disk 
requests is a weighted sum of ordinary and F/J requests 
according to their frequency. Eq. (1) can be used to deter-
mine the mean response of disk requests in RAID5. For this 
we need the first two moments of disk service time, which 
is the sum of seek time, rotational latency, and transfer 
time [27].
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In dedicated sparing rebuild processing is a systematic 
reconstruction of the blocks of a failed disk on a spare disk 
[22], while distributed sparing allocates adequate empty 
space across disks to reconstruct the contents of a failed 
disk [24]. Rebuild Units – RUs are fixed size blocks serving as 
the units of reconstruction. In the case of a RAID5 with N
disks N −1 RUs in a stripe are XORed to reconstruct the RU 
on the failed disk. We only consider dedicated sparing as 
in [22], since otherwise in distributed sparing disks need 
to be engaged in both reading and writing RUs [24]. An 
iterative solution for this purpose was developed and val-
idated in [24]. The RU used in [22–24] was a track, which 
had a fixed size in disks without Zoned Bit Recording – ZBR
[8]. An advantage of having tracks as the RU is that no ro-
tational latency is incurred and the reading of the track can 
be started at any sector, which is the smallest unit of data 
storage. In the case of disks with ZBR the linear recording 
density is maintained at approximately same level, which 
results in tracks whose capacity is roughly proportional to 
the diameter of the track. Variable RU sizes complicates 
buffer management for RUs read to be XORed. The variabil-
ity in track sizes can be taken into account by analyzing 
rebuild in multiple stages, which is used to take into ac-
count the fraction of materialized data blocks on the spare 
disk due to read redirection and updates to that disk [22].

Ordinary disk accesses are affected by the rebuild ac-
cesses, although rebuild accesses are processed at a lower 
priority. This is because disk requests are not generally 
preemptible. Partially preemptible rebuild accesses in the 
form of the split-seek option is considered and analyzed in 
[22], i.e., a track is not read after a seek to a track, if an 
arrival occurs while the seek is in progress. The effect of 
rebuild preemption during latency and transfer phases is 
investigated in [23]. Preemption lowers the response time 
of external requests that it is blocking, but more external 
requests are affected by the increased rebuild time, since 
the same track has to be visited several times to complete 
its reading, so that more external requests are processed in 
degraded and affected by rebuild processing [23].

Read requests to the failed disk entail higher response 
time. For example if disk response times are exponen-
tially distributed with mean R , the mean response time 
of an N − 1-way F/J request to reconstruct a block on a 
failed disk is R F/ J

N−1 = R H N−1, where the Harmonic sum 
H N−1 = ∑N−1

n=1 1/n. Simply prioritizing the components of 
F/J requests results in a much lower mean response time 
for N − 1-way F/J requests, but disk response times can be 
balanced by conditionally prioritizing tardy components of 
F/J requests [30].

3.1. Estimating rebuild time in RAID5 disk arrays

Rebuild time in RAID5 can be estimated using the anal-
ysis in Section 2. Let K denote the mean number of va-
cations taken per cycle or the number or read tracks. The 
mean duration of a cycle is the sum of a delay cycle and 
mean interarrival time: c = dv + t . Given that T denotes 
the number of disk tracks then the time to read a disk is 
c × (T /K ). Mean rebuild time can be approximated by the 
reading time of a single disk, since due to the load bal-
ance resulting from striping it takes about the same time 
to read all surviving disks (see Fig. 4 in [24] gives the co-
efficient of variation of rebuild time versus the arrival rate 
of external requests for distributed sparing). There is also 
the pipelining of rebuild writes with reads, so that the last 
rebuild write completes closely after the last rebuild read.

We next consider VSM with multiple vacations with 
different types. After a busy period corresponding to the 
processing of disk requests is completed, we have a se-
quence of vacations V i, i ≥ 1, e.g., the server returning 
from V 1 starts V 2 if there are no arrivals, i.e., the queue 
is empty, etc.

Our analysis is based on [5], which is repeated in [19]. 
The distribution of a type i vacations is V i(t), their LST 
V∗

i (s), and their jth moment vi, j = ∫ ∞
0 x jdV i(x). The prob-

ability of an arrival during the jth vacation is:

p j =
⎡
⎣1 −

∞∫
0

e−λtdV j(t)

⎤
⎦ j−1∏

k=1

∞∫
0

e−λtdVk(t)

=
[

1 − V ∗
j (λ)

] j−1∏
k=1

V ∗
k (λ).

The fraction of type i vacations is qi = ∑∞
j=i p j/K , where 

K was defined above. The distribution of a typical vacation 
is V (t) = ∑∞

i=1 qi V i(t) and its mean is v j = ∑∞
i=1 qi vi, j .

The analysis in [22] considers three types of vacations, 
but only two types of vacations are considered here for 
brevity. Type 1 vacations involve a disk seek to the next 
track to be read and a full disk rotation to read a track 
(assuming the rebuild unit is a track). Type 2 vacations in-
volve the reading of successive tracks without incurring a 
seek and are repeated until an arrival occurs. Type 2 va-
cations are not taken if an arrival occurs during the first 
(type 1) vacation. When there are no external requests all 
vacations will be of type 2 and rebuild time equals the 
number of tracks times disk rotation time. The probabil-
ity of an arrival during the first and the jth vacation is as 
follows:

p1 = 1 − V ∗
1 (λ),

p j = [1 − V ∗
2 (λ)]V ∗

1 (λ)V ∗
2 (λ)] j−2, j ≥ 2.

The mean number of vacations in this case is:

K = 1 + V ∗
1 (λ)

1 − V ∗
2 (λ)

and the probability of the two types of vacations is

q1 = 1 − V ∗
2 (λ)

1 + V ∗
1 (λ) − V ∗

2 (λ)
, q2 = 1 − q1.

The ith moment of vacation time is:

vi =
∞∑
j=1

q j vi, j = (1 − V ∗
2 (λ))vi,1 + V ∗

1 (λ)vi,2

1 − V ∗
2 (λ) + V ∗

1 (λ)
.

The mean residual vacation time is vr = v2/(2v).
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4. Threshold scheduling of readers and writers

Writers are mutually exclusive with one another and 
readers, so that writers are processed singly. while readers 
can process can be processed concurrently with a maxi-
mum degree of concurrency up to M , which is the number 
of servers.

Writers arriving according to a Poisson process with 
rate λ are processed until the writer queues is emptied, af-
ter which the processing of readers is started. The M read-
ers are processed in a closed system, so that a completed 
reader is immediately replaced by a new reader. No new 
readers are activated when the number of enqueued writ-
ers exceeds the threshold K . The processing of in-progress 
readers continues until they are all processed and this is 
the start of vacations with K initial writers. We are in-
terested in of additional writers enqueued in this period 
while emptying is in progress ( J ). The processing of writ-
ers is started, after the processing of the last active reader 
is completed, and continues until there are no more writ-
ers to process. This constitutes a delay busy period, since 
the processing of the first writer is delayed.

Readers have exponentially distributed service times 
with parameter ν , which is required for mathematical 
tractability. Writers with Poisson arrivals with rate λ have 
a general service time distribution with LST B∗(s), the mo-
ments of service time are xi , the mean x. The fraction 
of time the systems processes writers is ρw = λx, which 
should be less than one to allow readers to be processed. 
The case when writer service times are also exponentially 
distributed is considered in [21].

Markovian Decision Processes – MDP is used in [4] to 
show that the Threshold Fastest Emptying – TFE policy opti-
mizes the performance of the system under consideration. 
Higher values of K increases reader throughput, but this 
at the cost of mean writer response times, which is quan-
tified in [21] by analyzing an M/G/1 VSM where readers 
are processed during vacations taken when the system is 
idle, having processed all writers. We are interested in the 
reader throughput (γK ) and the mean number of writers 
in the system (N w ), which can be used to obtain mean 
writer response time: R w = N w/λ.

There are three processing phases if we start with a 
system with no writers.

Phase I: Readers are processed at a degree of concur-
rency M in a closed system. Each completed reader is 
immediately replaced by a new reader. No new readers 
are introduced when the writer queue length exceeds the 
threshold K . The duration of this phase is T I = K/λ, which 
is the time that it takes for K writers to arrive. The num-
ber of readers processed is the duration of the interval 
multiplied by the processing rate: NI = T I × Mν .

Phase II: This is the reader emptying phase, which 
starts as soon as the K th writer arrives. NI I = M read-
ers are processed in this phase. The duration of this phase 
is the maximum of M exponentials: T I I = H M/ν , where 
H M = ∑M

m=1 1/m is the Harmonic sum. The mean number 
writers arriving during this phase is J = λT I I .

Phase III: The system emptied from readers starts pro-
cessing writers, so that NI I I = 0 readers are processed 
in this phase. The duration of the delay cycle starting 
with K + J writers is obtained by taking the derivative of 
G∗(s) = B∗[s +λ −λG∗(s)](K+ J ) to obtain the mean, which 
yields T I I I = (K + J )g , where g = x/(1 − ρ) is an ordinary 
busy period.

Reader throughput is the ratio of number of readers 
completed and the sum of durations of the three phases.

γK = NI + NI I + NI I I

T I + T I I + T I I I
= (1 − ρw)Mν

K + λ
ν

K + λ
ν H M

. (9)

As K → ∞ readers attain the maximum throughput, 
since they are processed at the maximum degree of con-
currency without interruptions, so that γ∞ = (1 − ρw)Mν . 
This will result in high delays in processing writers.

Our analysis of VSM with multiple identical vacations 
is based on problem 5.23 in [9], which is solved in [12]. 
The z-transform for the number of requests in M/G/1 with 
VSM, following the decomposition principle for VSM, is the 
sum of writers in an M/G/1 queue and the writers accumu-
lated during vacations [6]: Hence we have the product of 
the respective z-transforms.

Q ′(z) = β(z)Q (z) = 1 − α(z)

α(1)(1)(1 − z)
.

(1 − ρ)(1 − z)

1 − z/B∗(λ − λz)

= (1 − α(z))(1 − ρ)

α(1)(1)(1 − z/B∗(λ − λz))
, (10)

where Q (z) = [(1 − ρw)(1 − z)]/[1 − z/B∗(λ − λz)] is the 
z-transform of an M/G/1 queueing system and β(z) is 
given by Eq. (5). In an M/G/1 queueing system with writers 
only,

N M/G/1 = dQ (z)

dz
|z=1 = ρw + λ2x2

2(1 − ρw)

and the mean number of requests arriving during the 
residual vacation time is given as follows (note we have 
applied L’Hospital’s rule):

N̄vac = β(1)(z)|z=1 = −α(1)(z)(1 − z) + (1 − α(z))

α(1)(1)(1 − z)2
|z=1

= 0

0
= −α(2)(z)(1 − z) + α(1)(z) − α(1)(z)

−2α(1)(1)(1 − z)

= α(2)(1)

2α(1)(1)
. (11)

The decomposition principle for VSM leads to:

Ñw = ÑM/G/1 + Ñvac. (12)

Taking the mean and dividing both sides by λ yields:

R w = R M/G/1 + v2

2v
.

Subtracting the mean service time (x) from both sides 
yields Eq. (1).

Let J̃ denote the random variable for the number of 
writers accumulated when the system is in Phase II. Then 
there will be K + J̃ writers when vacations end. In the 
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case when reader processing times are exponentially dis-
tributed: H(t) = 1 − e−νt the residual lifetime is F (t) =
H(t)

P [ J̃ ] =
∞∫

0

(λt) j

j! e−λtd[F (t)M ]

The z-transform of K + J̃ is

α(z) = MνzK
M−1∑
m=0

(−1)M

(M−1
m

)
(M + 1)ν + λ(1 − z)

N̄w = Q ′(1)
(1) = λ2x2

2(1 − ρw)
+ α(2)(1)

2α(1)(1)
(13)

α(1)(1) = M

ν

M−1∑
m=0

K (m + 1)ν + λ

(m + 1)2

α(2)(1) = M

ν2

M−1∑
m=0

(−1)m
(

M − 1

m

)

× K (K − 1)(m + 1)2ν2 + 2K (m + 1)νλ + 2λ2

(m + 1)3
.

5. Conclusions

We have shown that two seemingly different methods 
yield the same result for the mean duration of the delay 
cycle (E[Yc]). The two methods are utilized in analyzing 
the two systems described in Section 3, which deals with 
rebuild processing in RAID5 and Section 4, which deals 
with threshold scheduling of readers and writers. The first 
method is based on the standard queueing theory result 
for the mean duration of the delay cycle for VSM as the 
E[Yc] = (x + vr)/(1 − ρ), while the second method yields 
the delay busy period (E[Yb]) by multiplying the number 
of arrivals during the mean residual vacation time plus one 
(λvr + 1) by the mean duration of an ordinary busy period 
g = x/(1 − ρ).
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